燃煤电厂脱硫废水零排放技术现状与发展

吕武学1,于燕飞2,曲保忠2,陈嘉宁2,崔凌霄3,马双忱2

(1.华能威海发电有限责任公司 ,山东 威海 264205;2.华北电力大学 环境科学与工程系,河北 保定 071003;3.University of Illinois at Urbana-Champaign,Champaign,IL 61820)

摘 要:燃煤电厂脱硫废水存在水质差、水量大、处理成本高等问题,废水处理技术也在不断更新换代。不同电厂其脱硫废水的水质、水量相差较大,处理技术的选择也存在较大区别,为了更科学有效地选择脱硫废水处理技术,汇总分析了目前燃煤电厂脱硫废水处理技术,根据实际案例详细分析各处理技术的优缺点,为燃煤电厂对脱硫废水零排放技术的选择提供参考。研究结果显示,目前燃煤电厂脱硫废水零排放处理技术主要包括脱硫废水的预处理技术、浓缩减量技术、蒸发结晶技术以及转移固化技术,各废水零排放处理技术参差不齐。详细分析了预处理技术中的三联箱法、双碱法,根据废水特点,该预处理环节可省略,以减少投资成本;浓缩减量技术包含膜法浓缩(RO、FO、ED等)和热法浓缩(利用蒸汽浓缩、烟气余热浓缩),膜法浓缩可实现较高的浓缩倍率且系统稳定,但其较高的投资运行成本有待解决;热法浓缩依靠其低成本、高效率逐渐成为主流浓缩技术。蒸发结晶技术利用烟气余热蒸发(旁路烟道蒸发、烟道蒸发),其运行中的腐蚀、结垢问题有待解决;转移固化技术中的水泥化固定技术,不仅能够固定脱硫废水中的高浓度氯离子,同时对废水中的多种重金属离子具有较好的固定效果,该技术对处理产生的终端高浓度含盐水指明去处,其固化体得以二次利用;高浓度氯离子也可制备净水剂,实现废水中盐分的二次利用。同时,提出了脱硫废水处理技术选择的四原则。低成本、低风险、高成效的脱硫废水零排放工艺路线更符合当前企业需求。

关键词:脱硫废水;零排放;预处理;烟气蒸发;余热浓缩;水泥固化

中图分类号:TQ424.1

文献标志码:A

文章编号:1006-6772(2020)04-0011-10

收稿日期:2019-04-04;责任编辑:张晓宁

DOI:10.13226/j.issn.1006-6772.19040404

移动阅读

作者简介:吕武学(1967—),男,陕西富平人,高级工程师,研究方向为电厂生产管理与电力污染控制。E-mail:sdwh66885@163.com。

通讯作者:马双忱(1968—),教授,研究方向为燃煤电厂烟气脱硫脱硝、脱硫废水处理等方面的技术研发。E-mail:msc1225@163.com

引用格式:吕武学,于燕飞,曲保忠,等.燃煤电厂脱硫废水零排放技术现状与发展[J].洁净煤技术,2020,26(4):11-20.

LYU Wuxue,YU Yanfei,QU Baozhong,et al.Present situation and development of zero-discharge technology for desulfurization wastewater in coal-fired power plants[J].Clean Coal Technology,2020,26(4):11-20.

Present situation and development of zero-discharge technology for desulfurization wastewater in coal-fired power plants

LYU Wuxue1,YU Yanfei2,QU Baozhong2,CHEN Jianing2,CUI Lingxiao3,MA Shuangchen2

(1.Huaneng Weihai Power Co.,Ltd.,Weihai 264205,China ;2.Department of Environmental Science and Engineering,North China Electric Power University,Baoding 071003,China;3.University of Illinois at Urbana-ChampaignChampaignIL 61820)

Abstract:Desulfurization wastewater from coal-fired power plant has problems such as poor water quality,large water volume,and high treatment cost.The wastewater treatment technology is also constantly updated.The water quality and quantity of desulfurization wastewater of different power plants are also greatly different,and there are also big differences in the choice of treatment technology.In order to choose the desulfurization wastewater treatment technology more scientifically and effectively,the current desulfurization wastewater treatment technology of coal-fired power plants was summarized and analyzed,and the advantages and disadvantages of various treatment technologies were analyzed in detail according to the actual case.It provides a reference for coal-fired power plants to choose the zero-discharge technology of desulfurization wastewater.The research results show that the current zero-emission treatment technology for desulfurization wastewater of coal-fired power plants mainly includes:pretreatment technology for desulfurization wastewater,concentration and reduction technology,evaporative crystallization technology and transfer solidification technology,and the zero-emission treatment technologies of various wastewater are uneven.The triple tank method and double-alkali method in the pretreatment technology were analyzed in detail.According to the characteristics of the wastewater,the pretreatment link can be omitted,which can be omitted to reduce the investment cost.Concentration reduction technology includes membrane concentration(RO,FO,ED,etc.) and thermal concentration(using steam concentration,flue gas waste heat concentration) .Membrane concentration can achieve a higher concentration ratio and system stability,but its higher investment and operating cost needs to be resolved.Thermal concentration has gradually become the mainstream concentration technology due to its low cost and high efficiency.The evaporative crystallization technology uses flue gas waste heat evaporation(bypass flue gasification,flue gasification),and the problems of corrosion and scaling in its operation need to be resolved.The cementing and fixing technology in the transfer and solidification technology not only can fix the high concentration of chloride ions in the desulfurization wastewater,but also have a good fixing effect on various heavy metal ions in the wastewater.The technology points out the place of the terminal high concentration brine produced by the treatment,and the solidified body can be reused.High concentration chloride ion can also be used to prepare water purifying agent to realize the secondary utilization of wastewater.At the same time,four principles for the selection of desulfurization wastewater treatment technology were proposed.The low-cost,low-risk and high-efficiency desulfurization wastewater zero-discharge process route is more in line with the current needs of enterprises.

Key words:desulfurization wastewater;zero liquid discharge(ZLD);pretreatment;flue gas evaporation;residual heat concentration;cement solidification

0 引 言

我国燃煤电厂主流的烟气脱硫技术是采用石灰石-石膏法湿法脱硫,据中电联统计,2017年当年新投运火电厂烟气脱硫机组容量约0.4 亿kW;截至2017年底,全国已投运火电厂烟气脱硫机组容量约9.2 亿kW,占全国火电机组容量的83.6%,占全国煤电机组容量的93.9%。为了维持脱硫塔内的氯离子浓度低于20 000 mg/L[1],需外排脱硫废水。外排的脱硫废水不仅包括脱硫过程产生的废水,还包括锅炉冲洗水、机组冷却水等[2],导致产生的废水水质最为恶劣。

目前由于环保政策的严格要求,尤其是从2015年4月14日发布的《水污染防治行动计划》(即“水十条”),提出禁止燃煤电厂脱硫废水外排;截至2018-06-06,修编的《发电厂废水治理设计规范》规定了电厂废水处理设施的设计规范,新增多条废水的设计要求,逐步推动废水零排放的实现。针对废水零排放的要求,许多专家学者通过分析大量的国内外研究现状以及实际电厂案例运行结果,提出了几种脱硫废水零排放的技术路线,但技术的优劣仍需实践检验。

1 脱硫废水技术路线选择的总原则

1)可靠和经济性原则。便于运行和维护,满足脱硫废水零排放系统长期稳定运行的要求。

2)一厂一策原则。坚持因地制宜、因煤制宜、因炉制宜的原则,充分考虑各厂脱硫废水产生和排放实际情况。

3)协同性原则。脱硫废水处理系统要与现有污染控制单元,如脱硫、脱硝、除尘等节能环保设备协同考虑。

4)无害化原则。脱硫废水处理的产物要实现无害化和资源化,不能产生新的二次污染。

2 脱硫废水预处理技术

预处理是脱硫废水处理的初端,其目的是去除废水中的大颗粒悬浮物、钙镁硬度离子、部分重金属离子等,使废水水质达到下一处理环节的进水要求,同时也可减少下一处理阶段的结垢风险。常见的脱硫废水的预处理技术是化学沉淀法,如电厂普遍采用的三联箱技术、双碱法、石灰-烟道气法等。

三联箱处理技术是通过加入石灰乳将废水pH调至9左右[3],去除易形成氢氧化物沉淀的金属离子;再加入有机硫试剂使Cd2+、Hg2+等离子形成硫化物沉淀;最后在絮凝槽中加入助凝剂增强絮凝效果,经澄清池澄清,排水进入下一处理环节,澄清池中产生的污泥经板框压滤机压成滤饼外运,滤液再次返回三联箱,其工艺如图1所示。

图1 三联箱处理工艺
Fig.1 Triple box treatment process

三联箱作为脱硫废水的预处理技术,虽去除了废水中大量的钙镁易结垢离子,但未能去除其中高浓度的Cl-,因此需与其他处理技术相结合;同时其耗药量较大,通过对各电厂的调研分析,普遍反映三联箱处理技术在电厂不同负荷、脱硫废水水质水量多变的情况下达不到预期的处理效果。

双碱法是联合Ca(OH)2和Na2CO3或联合NaOH和Na2CO3处理脱硫废水,利用OH-将废水中的Mg2+等金属离子以氢氧化物沉淀形式析出,利用将废水中的Ca2+以CaCO3形式沉淀。

刘亚鹏等[4]利用这2种联合方式对实际电厂脱硫废水进行处理,结果表明,NaOH和Na2CO3联合的方式用药量少,对Ca2+、Mg2+的去除率均达到99.7%以上。连宙坤等[5]采用NaOH+Na2CO3的方法对脱硫废水进行预处理,Ca2+的去除率达94.44%,Mg2+的去除率可达99.74%,用药量相对较大。双碱法中对废水pH的控制是钙镁离子去除的关键[6],在pH=10.5~11时,废水中Mg2+的去除率可达99.87%[7]。张春桃等[8]利用化学沉淀-混凝-软化工艺对脱硫废水进行物化法处理,其对钙镁离子的去除率均达97%以上,同时对重金属镉、铅、镍均有一定的去除效果。汪岚等[9]分析了利用石灰-烟道气法软化脱硫废水的可行性,大幅降低药剂费用。吴志勇等[10]利用芒硝-石灰-烟道气法对废水进行软化处理,废水中钙、镁离子的质量分数均小于0.005%。河源电厂采用两级软化澄清处理技术分步向脱硫废水中加入石灰乳(或NaOH)、聚合铁(或其他凝聚剂)、有机硫、助凝剂(聚丙烯酰胺)和纯碱等药剂,完成对脱硫废水的全面软化,对钙、镁离子的去除率均达到97%以上[11],其工艺流程如图2所示。该工艺可利用电厂原有的处理设施,运行灵活性较高,但由于该技术要在较高的pH下运行,因此碱性药剂和纯碱(软化剂)投加量很大,污泥产生量高,约50 t/d(以泥饼计),而且系统占地面积较大。长兴电厂利用石灰和碳酸钠对废水进行除硬,其出水水质中Ca2+、Mg2+均未检测出,每吨水消耗药剂费用为14.126元/m3

图2 河源电厂双碱法脱硫废水预处理工艺
Fig.2 Pretreatment process of double alkali desulfurization
wastewater in Heyuan Power Plant

3 浓缩减量技术

脱硫废水的浓缩减量是为了降低废水量、回收水资源、减少后续蒸发的处理量,从而降低蒸发固化的成本[12]。目前浓缩减量技术主要分为膜法浓缩和热法浓缩。膜法浓缩包括正渗透(FO)、反渗透(RO)、电渗析(ED)、纳滤(NF)、膜蒸馏(MD)等[13];热法浓缩主要是依靠蒸汽实现废水的蒸发,包括机械蒸汽再压缩(MVR)、多效蒸发(MED)、蒸汽动力压缩式(TVR)、多级闪蒸、降膜蒸发等[14],也可依靠电厂烟气余热进行废水的蒸发浓缩减量,该技术无需引入大量蒸汽能源,节约成本,同时又能达到预期目标,实现了电厂的废热再利用。

3.1 膜法浓缩

3.1.1 反渗透(RO)

RO技术最初常用于海水淡化,全球近80%的海水淡化处理技术均采用反渗透[15]。RO以压力差为推动力,在高浓度水溶液一侧施加压力,使高浓度水溶液侧与低浓度水溶液侧的压差大于渗透压,则高浓度水溶液中的水通过渗透膜进入低浓度水溶液中[16]。起初对反渗透的研究主要是反渗透膜的改进,如具有较好的半透性醋酸纤维制成的反渗透膜;随着纳米技术的发展,将纳米材料应用于膜,为反渗透膜开辟了新的道路。目前反渗透膜市场主要以薄膜复合材料(主要是TFC)为主[17],具有能耗低、处理能力高等优势,已广泛用于脱硫废水处理,其操作压力在2~100 MPa,可分离分子量小于500的小分子物质,水的渗透通量为0.1~2.5 m3/(m2·d)。但RO系统易发生膜污染与结垢堵塞[18],需定时清理膜组件,且需达到反渗透的进水要求。经一级RO浓缩的浓水,其盐浓度未能达到可直接进行蒸发结晶的盐浓度[19],所以,采用RO无法将盐水浓缩至可结晶固化水平。连坤宙等[20]利用“微滤+反渗透”工艺对预处理后的火电厂脱硫废水进行深度处理,该工艺系统运行稳定,无明显污堵现象,系统脱盐率大于98%。伊学农等[21]利用反渗透特种膜处理脱硫废水,其系统出水的氯离子含量为1 700 mg/L,对氯离子的去除率达88%,对钙镁离子的截留率达84%以上,同时具有去除部分重金属的能力,对Cr、Pb、Ni的去除率达49%以上。王可辉等[22]利用管式微滤膜(TMF)+高压碟片式反渗透(DTRO)处理脱硫废水,结果表明,9 MPa压力下可将脱硫废水的含盐量浓缩至11%以上,高压反渗透的产水电导在800 μS/cm左右,同时进行了“管式超滤膜+高盐反渗透+高压反渗透”的膜浓缩中试试验,可达到零排放的要求。周明飞等[23]利用反渗透-电解制氯对脱硫废水进行综合利用,其反渗透浓水质量浓度可达114.6 g/L,满足电解制氯的水质要求。张泉等[24]利用膜组合工艺,其浓缩液的Cl-浓度为原来的1.7~2.3倍,同时其膜组件均未出现不可逆膜污染。吴优福等[25]对2种零排放技术进行对比分析,分析表明,其两级RO耦合正渗透技术可将20 t/h脱硫废水浓缩至3 t/h,其TDS可浓缩至150 000~200 000 mg/L,成本相对较低。

3.1.2 正渗透(FO)

正渗透(FO)技术最早应用于海水淡化、污水处理、垃圾渗滤液处理[26]。FO以选择性渗透膜两侧的渗透压为驱动力,溶液中的水从高水化学势向低水化学势传递,溶质离子被阻挡[27]。正渗透无需外界压力驱动,能耗低,但需要汲取液来提供推动力[28]。对于正渗透膜材料,可应用于反渗透的膜材料一般均可应用于FO技术。正渗透处理效果的影响因素有FO膜、汲取液、运行条件等[29]。张军等[30]分析了多种因素对正渗透浓缩浓盐水的影响,浓盐水TDS可从60 000 mg/L浓缩至126 000 mg/L,同时证实氯化钠适合作驱动液。国内第1套正渗透系统脱硫废水零排放项目在华能长兴电厂已投产运行,可将22 m3/h含盐水浓缩至1.5~2.0 m3/h,将含盐量>60 000 mg/L的浓水浓缩至含盐量>200 000 mg/L[31]。该技术引自美国,其核心技术尚未掌握,技术服务难度大,整套装置占地700 m2,正渗透仍需部分蒸汽量,同时存在较多运行问题,以及正渗透进水水质的保证问题。

RO应用范围广,但易发生膜污染与结垢堵塞问题;FO属自发过程,能耗低,无需额外压力,设备简单,其膜表面不易形成滤饼层[32],膜污染可逆[33],但需选取合适的汲取液,汲取液的再生需额外能量,同时,正渗透膜存在严重的内部浓差极化现象[34]

3.1.3 电渗析(ED)

电渗析技术以直流电场为驱动力,利用离子交换膜的选择透过性实现溶液的淡化[35]。电渗析技术具有优异的处理效果、较低的运行能耗等优点。张维润等[36]研究分析了电渗析浓缩海水制盐,其能将海水浓缩6倍,浓水Cl-浓度可达116 g/L,系统总能耗在300 kWh内,但其膜堆的结垢问题有待解决。孟友国等[37]利用均相电驱动膜技术处理软化后的脱硫废水,其浓水TDS含量达15%,淡水TDS含量低于0.3%,可直接回用为脱硫塔的补水。王朝乾等[38]优化了浓海水制卤过程,浓缩率80%时,氯化钠浓缩倍率可达5倍以上,NaCl含量大于210 g/L。杨博等[39]研究了脱硫废水中Mg2+对电渗析过程的影响,废水中Mg2+浓度大于0.179 mol/L时,阴阳极膜上附着较多沉淀,对于Mg2+浓度较高的废水需进行预处理。卢剑等[40]研究了海水直流冷冷却电厂脱硫废水处理中利用电渗析进一步浓缩反渗透浓水,将溶解性固体质量分数由7%浓缩至约21%,Cl-质量浓度约为 93 000 mg/L。

综上,膜浓缩主要存在以下4个问题:① 成本。投资成本和运行费用高,包括能耗成本、清洗成本、膜元件更换成本、设备维修、维护成本等。② 易结垢和堵塞。系统可靠性差。③ 前处理要求高。膜组件对进水要求较高,需去除废水中悬浮物等杂质,增加了废水前处理成本。④ 占地面积大。需提供专一的场地以搭建膜组件等设备。

3.2 热法浓缩

3.2.1 蒸汽浓缩

利用蒸汽进行废水蒸发,常见技术包括机械蒸汽再压缩技术(MVR)、多效强制循环蒸发(MED)。MED是将多级蒸发器串联,前一级蒸发器产生的蒸汽作为下级蒸发器的热源[41],效数越多,越节约生蒸汽,但考虑到投资成本高的问题,需衡量采用的级数。Urbaniec等[42]研究表明,五效带原料预热的蒸发系统热能利用率高,蒸汽消耗量小。整期浓缩技术对蒸发器的选材需特别注意,同时还需对蒸发器进行定期清洗,存在热量损失问题[43]

MVR技术利用蒸发系统自身产生的二次蒸汽及其能量,将低品位的蒸汽经压缩机机械做功提升为高品位热源,重新进入蒸发器替代新鲜蒸汽[44]。MVR系统较成熟,占地面积较小,运行平稳,自动化程度高。但在盐水浓缩过程中,MVR系统运行仍存在盐浆排放过程中堵塞、风机叶轮易损坏等问题[45]。毛彦霞等[46]利用MVR技术模拟脱硫废水中试试验,试验表明,该技术能将Cl-浓度从13 035.96 mg/L浓缩至31 390.26 mg/L,其浓缩倍率约为原水的2.4倍,产水率达80%,其蒸馏出水TDS为4.5 mg/L,处理效果较好,但未考虑废水pH对MVR的影响,设备存在腐蚀和结垢问题。流程上MVR技术比MED技术短,设备少[47],占地面积小,蒸汽的消耗量较低,但在一次性投资成本上,MVR高于MED[48]。国电汉川2×1 000 MW发电机组利用膜浓缩和MVR蒸发结晶技术将脱硫废水中的水回用,得到纯度为97.5%的工业精制二级盐[49]。利用蒸汽蒸发浓缩脱硫废水,采用MVR或MED技术,投资成本均偏高。河源电厂及恒益电厂均采用蒸发浓缩的工艺,其处理1 t废水耗电在20~30 kWh[50],同时需大量的蒸汽能源,其蒸发器的结垢防腐蚀问题仍有待解决,一般其进水都需要预处理。

3.2.2 烟气余热浓缩

烟气余热对废水浓缩减量一般抽取95~120 ℃低温烟气,在外部搭建浓缩塔,浓缩塔内布设喷淋装置,脱硫废水经水泵泵送至浓缩塔中,在塔内实现循环浓缩,浓缩后的浓盐水进入下一处理环节。图3为泰州电厂脱硫废水零排放工艺,利用引风机后110 ℃烟气对脱硫废水进行浓缩,浓缩倍率可达5~10 倍,最高浓缩后Cl-浓度接近300 000 mg/L。湖北能源集团鄂州电厂2×1 000 MW机组的浓缩系统与泰州电厂相似,其抽取占总烟气量18%、烟温为92.8 ℃的低温烟气进行废水浓缩减量,处理能力为10 t/h,浓缩后浆液含固率10%~25%。运行过程中浓缩塔内由于浓缩倍率较高,有较多硫酸钙等结晶盐析出,导致运行不稳定,其内部结垢问题有待解决。

图3 泰州电厂脱硫废水零排放工艺路线
Fig.3 Zero discharge process route of desulfurization
wastewater inTaizhou power plant

利用低温烟气余热进行废水的浓缩减量,使电厂的低温烟气余热得到有效利用,无需引入其他蒸汽等能源;可去除预处理单元,电厂也可自行收纳产生的浓盐水;附加处理设施可利用电厂现有的设备进行改造,改造费用不高,大幅减少了投资成本;由于浓缩塔可单独隔离与拆卸,方便运行维护。该技术将成为废水浓缩减量的新趋势。

4 蒸发结晶技术

将浓缩后少量较高浓度的脱硫废水进行蒸发结晶,较为成熟的MVR蒸发结晶技术和多效蒸发结晶技术已得到普遍应用。目前利用电厂烟气余热进行蒸发结晶的技术,如旁路烟道蒸发、烟道喷雾蒸发等日渐成熟。

4.1 旁路烟道蒸发

旁路烟道蒸发是利用烟气余热进行废水蒸发结晶的技术。抽取部分空预器前350℃左右高温烟气[51],将废水泵送至蒸发结晶器的喷淋区,利用双流体雾化喷头将废水雾化成小液滴,废水在短时间内蒸发结晶,产生的结晶盐随烟气被电除尘器捕集,其工艺流程如图4所示。该技术对电厂原有系统影响较小[52],河南焦作万方2×350 MW机组引入旁路烟道蒸发结晶器系统[53],脱硫废水的体积流量减少4.3%,工艺补充水体积流量减少14.6%[54]

图4 旁路烟道蒸发结晶
Fig.4 Bypass flue vaporized crystallization technology

国内旁路烟道研究大多以数值模拟为主,缺少与实际拟合度较高的动力学模型;气液两相流雾化喷头孔径小,处理复杂的未经预处理的废水时,易堵塞;同时雾化器密封件材料的耐温性有待提高;酸性脱硫废水在蒸发过程中易腐蚀蒸发器,需选择合理的脱硫废水前处理工艺或对蒸发结晶器内部涂防腐材料。

除了利用旁路蒸发结晶器蒸发,还可采用蒸发塔蒸发。蒸发塔最初引进日本三菱技术,内部采用旋转雾化喷头将废水雾化成小颗粒。于伟静等[55]通过理论和试验相结合对蒸发塔进行研究,结果显示,抽取烟气量控制在5%以内不会对电厂热系统造成影响。贾绍广等[56]利用蒸发塔并结合模型建立了与工业应用实例有较高契合度的热量衡算公式。山西临汾热电厂建立了蒸发塔处理脱硫废水示范工程,抽取空预器前6%左右、335 ℃高温烟气蒸发脱硫废水,其工艺流程如图5所示,实际运行过程中废水蒸发量6 t/h满足并优于设计值5 t/h,废水处理费用为53.4元/t。

图5 蒸发塔蒸发结晶
Fig.5 Evaporation crystallization in evaporation tower

虽然蒸发塔能较好实现废水的蒸发结晶,但应用过程中存在许多技术风险:

1)结垢风险。300 ℃左右的高温烟气通过旋转雾化喷头(转速13 000~16 000 r/min)后高速旋转,在中心形成负压区,当喷枪喷出介质流速低于一定值,高温烟气会将喷头本体加热,使其温度升高。由于喷枪喷出介质中含有较高浓度的Ca2+、Mg2+等结垢物质,喷头温度升至60 ℃以上后,雾化器内部极易出现结垢现象,影响后续雾化和运行效果,需定期酸洗清理。

2)维护困难。旋转雾化器布置在高温烟道上方,雾化轮表面及雾化器传动装置的保护套上易生成沉淀物。机械设备易出现润滑油脂干涩、电机防爆、转轴断裂卡塞等机械故障,检修维护量较大。

3)可利用率差。旋转雾化器无法实现在线检修,必须停机起吊拆出,造成设备可利用率下降。

4)关键设备进口。国产旋转雾化器可靠性差,更换频繁,关键部件需进口,且需备用,维护成本高。

5)占地面积大。蒸发塔径是蒸发结晶器的2~3倍,锅炉尾部空间有限,安装困难。

4.2 烟道喷雾蒸发

烟道喷雾蒸发是在空预器与电除尘器之间的烟道内部设置气液两相流雾化喷嘴,将脱硫废水雾化成小液滴[57],所形成的液滴与烟气热交换后瞬间蒸发,产生的结晶盐被除尘器捕集,其工艺流程如图6所示。该技术工艺简单、占地面积小、无需加药,减少了投资运行维护费用,对除尘器无明显影响,不影响粉煤灰品质[58]。但烟道蒸发受负荷的影响较大,处理量不足,喷嘴易堵塞,同时,空预器后烟温偏低。柴峰等[59]研究表明,脱硫废水烟道蒸发将烟温控制在180 ℃左右为宜,且烟道可利用的有效长度不足,蒸发不彻底,造成积灰和腐蚀[60]。废水液滴在低温烟气中蒸发,会降低烟气温度,增加烟气湿度,因此,需建立废水蒸发后烟气的酸露点模型和湿度变化模型,考察喷入脱硫废水后,酸露点的变化以及烟气湿度变化导致的烟道壁、除尘器腐蚀和烟气含水增加引起除尘器堵塞的可能性。

图6 烟道蒸发技术
Fig.6 Flue evaporation technology

5 废水零排放产物去向

脱硫废水零排放产物去向是零排放技术选择的关键。废水零排放过程中每个处理环节都会产生废渣废物,如在三联箱处理环节产生的污泥最终进入污泥处理系统。目前废水蒸发产生的结晶盐及高浓度含盐水主要有4种处理途径:① 转移入灰渣、液态排渣或粉煤灰中;② 产生的结晶盐可分为杂盐和纯盐,杂盐的利用价值较低,纯盐可被部分行业利用,如在废水除硬过程中产生的Mg(OH)2可回收利用;③ 产生的高盐水可电解制氯,产生的次氯酸盐可用于循环水消毒;④ 高浓度盐水进行水泥固化制备建筑材料(如制砖、低品级建材),或直接抛弃。

脱硫废水是高含盐水,对于高含盐废水的利用,Yeboahy等[61]将脱硫废水与粉煤灰混合,用高浓度NaOH溶液作为碱性激发剂提高粉煤灰的火山灰活性,制得的固化体养护7 d后抗压强度达7 MPa以上,满足填埋标准。Renew等[62]将脱硫废水浓缩液、粉煤灰和少量水泥混合制得固化体,固化体的As5+、Cd2+、Hg2+、Se4+浸出率在10%~32%,在混合物体系中加入少量FeSO4可提高重金属离子的固定效果。将高盐水与粉煤灰、砂石骨料、水泥作为固化体的组分,使较高浓度的Cl-被固定于水泥块中,是处理终端废水的好渠道。固化体水泥块不易掺入钢筋等,避免高氯环境下氯对钢筋的腐蚀,制成的固化体可用作路牙石、铺路等,Cl-的浸出以及重金属的浸出尚需深入研究。

6 脱硫废水盐分制备净水剂

净水剂是将其投入废水中之后,与废水中的其他杂质发生凝聚反应,将废水中的小颗粒悬浮物凝聚成较大颗粒的沉淀物以便去除。常见的净水剂有聚合氯化铝、聚合硫酸铝、聚合氯化铁、聚合硫酸铁、聚合氯化铝铁、聚丙烯酰胺等。脱硫废水在经浓缩减量后含有较高浓度的氯离子,可利用废水中的氯离子与铁、铝类化合物发生反应,生成聚合氯化铁、聚合氯化铝,从而制备净水剂,其工艺流程如图7所示。

图7 脱硫废水盐分制备净水剂工艺流程
Fig.7 Process flow chart of preparation of water
purifier by desulfurization wastewater salt

由图7可知,利用含有大量铁铝元素的赤泥作为辅助原料,采用工业原料酸浸法,使赤泥与硫酸反应后得到聚合硫酸铁前驱体,再利用脱硫废水中氯离子与聚合硫酸铁反应,依据协同增效原理,形成含有聚合硫酸铁、聚合氯化铁、聚合氯化铝等的复合型净水剂。此方法解决了脱硫废水高浓度氯离子难处理问题,使得废水能够二次利用,制得的净水剂可进行自用或外销,产生一定的经济效益;该工艺产生的复合型净水剂,结合了聚合硫酸铁、聚合氯化铝、聚合氯化铁等净水剂的优势,能够对废水中的多种污染成分进行有效处理;此工艺不改造电厂系统,对整体电厂系统无影响。但其仍存在较多待研究内容,如:赤泥与硫酸废液反应过程中,赤泥的种类、固液比、反应温度、赤泥粒径、反应时间;高浓度氯离子溶液与铁铝溶液的聚合反应中,pH值、反应时间、反应温度、氯离子浓度等需进行深入研究。

7 结 语

电厂废水零排放是目前及未来电力环保的必然要求,现阶段废水处理技术参差不齐,在系统可靠性、技术经济性方面表现不佳,通过对多种废水处理技术的分析比较:

1)大多数旧电厂的预处理技术仍采用三联箱设备,或对现有设备进行改造;对于新建电厂,针对不同电厂的废水特点,预处理环节有时可省略,减少废水处理的投资及运行成本。

2)对于硬度较低的废水可利用膜法进行浓缩处理,可实现较高的浓缩倍率,但其较高的投资及运行成本有待解决。

3)废水零排放技术路线需结合电厂的生产特点选择。由于电厂废水水质普遍较差,对电厂烟气余热的利用是未来废水处理技术的发展趋势,尤其在低温余热利用,但仍存在诸多问题[63]

4)脱硫废水的盐分制备净水剂,具有对电厂运行无影响、产生的净水剂能够二次利用等安全性与经济性优势,值得进行深入研究。

参考文献

[1] 周至祥,段建中.火电厂湿法烟气脱硫技术手册[M].北京:中国电力出版社,2006:53-54.

ZHOU Zhixiang,DUAN Jianzhong.Thermal power plant wet flue gas desulfurization technical manual [M].Beijing:China Electric Power Press,2006:53-54.

[2] 马双忱,温佳琪,万忠诚,等.中国燃煤电厂脱硫废水处理技术研究进展及标准修订建议[J].洁净煤技术,2017,23(4):18-28.

MA Shuangchen,WEN Jiaqi,WAN Zhongcheng,et al.Treatment progress and standard modification suggestion for FGD wastewater from coal-fire power plants in China [J].Clean Coal Technology,2017,23(4):18-28.

[3] 马双忱,于伟静,贾绍广,等.燃煤电厂脱硫废水处理技术研究与应用进展[J].化工进展,2016,35(1):255-262.

MA Shuangchen,YU Weijing,JIA Shaoguang,et al.Research and application progresses of flue gas desulfurization(FGD) wastewater treatment technologies in coal-fired plants [J].Chemical Industry And Engineering Progress,2016,35(1):255-262.

[4] 刘亚鹏,王金磊,陈景硕,等.火电厂脱硫废水预处理工艺优化及管式微滤膜实验研究[J].中国电力,2016,49(2):153-158.

LIU Yapeng,WANG Jinlei,CHEN Jingshuo,et al.Optimization of pretreatment process for desulfurization wastewater in thermal power plants and experimental study on tube microfiltration membrane [J].China Power,2016,49(2):153-158.

[5] 连坤宙,胡特立,王永前,等.燃煤电厂脱硫废水预处理装置设计与中试研究[J].中国电力,2018,51(6):166-171.

LIAN Kunzhou,HU Teli,WANG Yongqian,et al.Pretreatment device design and pilot application of desulfurization wastewater in coal-fired power plants[J].Electric Power,2018,51(6):166-171.

[6] 刘海洋,徐小生.脱硫废水零排放预处理试验研究[J].山东工业技术,2017(16):31-32.

LIU Haiyang,XU Xiaosheng.Experimental study on zero liquid discharge pretreatment of desulfurization wastewater[J].Shandong Industrial Technology,2017(16):31-32.

[7] 魏明波,胡溪,杨万强,等.燃煤电厂脱硫废水处理工艺试验研究[J].洁净煤技术,2017,23(1):95-99.

WEI Mingbo,HU Xi,YANG Wanqiang,et al.Experimental study on concentration treatment process of desulfurization waste water in coal-fired power plant[J].Clean Coal Technology,2017,23(1):95-99.

[8] 张春桃,王鑫,王海蓉,等.燃煤电厂脱硫废水的零排放处理技术[J].化工环保,2016(1):30-35.

ZHANG Chuntao,WANG Xin,WANG Hairong,et al.Zero liquid discharge(ZLD)technology of desulfurization wastewater in coal-fired power plant[J].Environmental Protection of Chemical Industry,2016(1):30-35.

[9] 汪岚,蔡井刚,胡治平.石灰-芒硝-烟道气法软化脱硫废水的可行性分析[J].浙江电力,2016(2):48-50,67.

WANG Lan,YUAN Jinggang,HU Zhiping.Feasibility analysis of desulphurization wastewater softening through lime-mirabilite-flue gas method[J].Zhejiang Electric Power,2016(2):48-50,67.

[10] 吴志勇.废水蒸发浓缩工艺在脱硫废水处理中的应用[J].华电技术,2012(11):63-66.

WU Zhiyong.Application of wastewater evaporation and concentration process in desulfurization wastewater treatment[J].Huadian Technology,2012(11):63-66.

[11] 袁国全,张江涛,潘振波,等.脱硫废水预处理系统软化设备的调试和分析[J].热力发电,2011,40(2):76-78.

YUAN Guoquan,ZHANG Jiangtao,PAN Zhenbo,et al.Commission debugging and analysis of the softening equipment in wastewater pretreatment system of FGD [J].Thermal Power Generation,2011,40(2):76-78.

[12] 杨跃伞,苑志华,张净瑞,等.燃煤电厂脱硫废水零排放技术研究进展[J].水处理技术,2017,43(6):29-33.

YANG Yuesan,YUAN Zhihua,ZHANG Jingrui,et al.Research progress on zero emission technology of desulfurization wastewater from coal-fired power plants [J].Technologyof Water Treatment,2017,43(6):29-33.

[13] 蔡继东,万忠诚,张庭怿.燃煤电厂脱硫废水零排放工程的设计与应用[J].广东电力,2018,31(5):28-34.

CAI Jidong,WAN Zhongcheng,ZHANG Tingyi.Design and application of desulfurizationwastewater zero discharging project of coal-fired power plant[J].Guangdong Electric Power,2018,31(5):28-34.

[14] 郜瑞莹,林建中.燃煤电厂脱硫废水零排放工艺路线研究[J].南方能源建设,2018,5(1):107-112.

GAO Ruiying,LIN Jianzhong.Research on zero liquid discharge FGD wastewater treatment technology in coal-fired power plant[J].Southern Energy Construction,2018,5(1):107-112.

[15] SAUVET-GOICHON B.Ashkelon desalination plan:A successful challenge[J].Desalination,2007,203:75-81.

[16] 霍东.基于反渗透装置在电厂水处理中的应用分析[J].化工管理,2013(10):67-68.

HUO Dong.Application analysis of reverse osmosis based on power plant water treatment[J].Chemical Management,2013(10):67-68.

[17] PORTER M C,PORTER M,PORTER C J,et al,Handbook of industrial membrane technology[M].New Jersey:Noyes Publication,1990.

[18] LEE K P,ARNOT T C,MATTIA D.A review of reverse osmosis membrane materials for desalination:Development to date and future potential[J].Journal of Membrane Science,2011,370(1):1-22.

[19] TONG T,ELIMELECH M.The global rise of zero liquid discharge for wastewater management:Drivers,technologies,and future directions.[J].Environmental Science & Technology,2016,50(13):6846-6855.

[20] 连坤宙,陈景硕,刘朝霞,等.火电厂脱硫废水微滤、反渗透膜法深度处理试验研究[J].中国电力,2016,48(2):148-152.

LIAN Zhoukun,CHEN Jingshuo,LIU Zhaoxia,et al.Experimental study on advanced treatment of desulfurization wastewater from thermal power plant by microfiltration and reverse osmosis membrane method[J].China Power,2016,48(2):148-152.

[21] 伊学农,王玉琳,闫志华.反渗透特种膜处理湿法脱硫废水中试研究[J].中国给水排水,2016,32(1):67-70.

YI Xuenong,WANG Yulin,YAN Zhihua.Pilot study on reverse osmosis membrane for treatment of wet desulfurization wastewater[J].China Water & Wastewater,2016,32(1):67-70.

[22] 王可辉,蒋芬,徐志清,等.TMF+DTRO工艺深度处理脱硫废水[J].水处理技术,2017,43(3):119-121.

WANG Kehui,JIANG Fen,XU Zhiqing,et al.Experimental study on TMF + DTRO advanced treatment of desulphurization wastewater from coal-fired power plant[J].Technology of Water Treatment,2017,43(3):119-121.

[23] 周明飞,吴火强,王璟.燃煤电厂脱硫废水综合利用处理工艺实验研究[J].水处理技术,2017(10):108-114.

ZHOU Mingfei,WU Huoqiang,WANG Jing,et al.Experimental study on desulfurization wastewater comprehensive utilization treatment process in coal-fired power plant[J].Technology of Water Treatment,2017(10):108-114.

[24] 张泉,杨亚新,李志军,等.膜组合工艺浓缩净化电厂湿法脱硫废水研究[J].给水排水,2017,43(9):52-56.

ZHANG Quan,YANG Yaxin,LI Zhijun,et al.Study on membrane combined process concentration and purification of wet desulfurization wastewater from power plant[J].Water Supply and Sewerage,2017,43(9):52-56.

[25] 吴优福,刘捷,海玉琰,等.超超临界1 000 MW机组脱硫废水零排放技术[J].热力发电,2017,46(5):108-114.

WU Youfu,LIU Jie,HAI Yuyan,et al.Zero-emission technology of ultra-supercritical 1 000 MW unit desulfurization wastewater[J].Thermal Power Generation,2017,46(5):108-114.

[26] YORK R J,THIEL R S,BEAUDRY E G.Full-scale experience of directosmosis concentration applied to leachate management[C]//Proceedings of the Seventh International Waste Management and Landfill Sympo-sium(Sardinia′99)Cagliari:Sardinia,1999.

[27] 方彦彦,田野,王晓琳.正渗透的机理[J].膜科学与技术,2011,31(6):95-100.

FANG Yanyan,TIAN Ye,WANG Xiaolin.The mechanism of forward osmosis[J].Membrane Science and Technology,2011,31(6):95-100.

[28] 金海洋,黄阳波,于萍.正渗透技术及其应用[J].工业用水与废水,2014,45(1):5-9.

JIN Haiyang,HUANG Yangbo,YU Ping.Forward osmosis technology and its applications[J].Industrial Water Wastewater,2014,45(1):5-9.

[29] 刘晓静,吴金玲,刘春,等.正渗透技术在水和废水处理中的应用研究[J].环境科学学报,2016,36(8):2701-2713.

LIU Xiaojing,WU Jinling,LIU Chun,et al.Forward osmosis technology applied for water and wastewater treatment[J].Acta Scientiae Circumstantiae,2016,36(8):2701-2713.

[30] 张军,郭有智.正渗透浓缩浓盐水影响因素研究初探[J].水处理技术,2016(11):12-17.

ZHANG Jun,GUO Youzhi.Concentration of brine by forward osmosis[J].Technology of Water Treatment,2016(11):12-17.

[31] 邵国华,方棣.电厂脱硫废水正渗透膜浓缩零排放技术的应用[J].工业水处理,2016,36(8):109-112.

SHAO Guohua,FANG Li.Application of MBC zero liquid discharge technology to desulfurization wastewater treatment in a power plant[J].Industrial Water Treatment,2016,36(8):109-112.

[32] 王波,文湘华,申博,等.正渗透技术研究现状及进展[J].环境科学学报,2016,36(9):3118-3126.

WANG Bo,WEN Xianghua,SHEN Bo,et al.The current status and research advances in forward osmosis[J].Acta Scientiae Circumstantiae,2016,36(9):3118-3126.

[33] 黄秋香,刘志强,孙梦,等.正渗透膜污水处理技术[J].能源与环境,2017(2):95-96,98.

HUANG Qiuxiang,LIU Zhiqiang,SUN Meng,et al.Sewage treatment technology of osmotic membrane[J].Energy and Environment,2017(2):95-96,98.

[34] 苏艳敏,郑化安,付东升,等.煤化工反渗透浓水浓缩的研究现状[J].洁净煤技术,2014,20(1):104-109.

SU Yanmin,ZHENG Huaan,FU Dongsheng,et al.Research progress of desalination-concentration of reverse osmosis drained wastewater from coal chemical industry[J].Clean Coal Technology,2014,20(1):104-109.

[35] 赵瑞华,凌开成,张永奇.电渗析废水处理技术[J].太原理工大学学报,2000,31(6):721-724.

ZHAO Ruihua,LING Kaicheng,ZHANG Yongqi.Electrodialysis wastewater treatment technology[J].Journal of Taiyuan University of Technology,2000,36(6):721-724.

[36] 张维润,樊雄.电渗析浓缩海水制盐[J].水处理技术,2009,35(2):1-4.

ZHANG Weirun,FAN Xiong.Electrodialysis concentrated seawater salt[J].Technology of Water Treatment,2009,35(2):1-4.

[37] 孟友国,吴雅琴,朱圆圆,等.均相电驱动膜技术在脱硫废水资源化中的应用研究[J].水处理技术,2016(6):33-35.

MENG Youguo,WU Yaqin,ZHU Yuanyuan,et al.Application of homogeneous electric drive membrane technology in the desulfurization wastewater resource utilization[J].Technology of Water Treatment,2016(6):33-35.

[38] 王朝乾,田凤超,刘金荣.浓海水电渗析制卤工艺研究[J].盐业与化工,2015,44(11):25-29.

WANG Chaoqian,TIAN Fengchao,LIU Jinrong.Study on bittern making process of desalinated seawater electrodialysis[J].Journal of Salt and Chemical Industry,2015,44(11):25-29.

[39] 杨博,李玉忠,崔琳,等.Mg2+对脱硫废水电解-电渗析过程的影响[J].化工进展,2017,36(S1):482-488.

YANG Bo,LI Yuzhong,CUI Lin,et al.Influence of magnesium ions on electrolysis-electrodialysis process of desulfurization wastewater[J].Chemical Industry and Engineer Progress,2017,36(S1):482-488.

[40] 卢剑,李亚娟,许臻,等.海水直流冷却电厂烟气脱硫废水处理工艺的研究[J].中国电力,2018,51(11):179-184.

LU Jian,LI Yajuan,XU Zhen,et al.Study on treatment process of flue gas desulfurization wastewater from seawater DC cooling power plant[J].Electric Power,2018,51(11):179-184.

[41] AL-SHAMMIRI M,SAFAR M.Multi-effect distillation plants:State of the art [J].Desalination,1999,126(1/3):45-59.

[42] URBANIEC K.The evolution of evaporator stations in the beet-sugar industry[J].Journal of Food Engineering,2004,61:505-508.

[43] 吴韩,梅小慧.多效蒸发技术在高盐度废水的应用[J].广东化工,2013,40(23):123-123.

WU Han,MEI Xiaohui.Application of multiple-effect evaporation technology in high salinity wastewater[J].Guangdong Chemical Industry,2013,40(23):123-123.

[44] 胡石,丁绍峰,樊兆世.燃煤电厂脱硫废水零排放工艺研究[J].洁净煤技术,2015,21(2):129-133.

HU Shi,DING Shaofeng,FAN Zhaoshi.Zero release technology of desulfurization waste water in coal-fired power plant[J].Clean Coal Technology,2015,21(2):129-133.

[45] 董文虎,孙玉堂,陈光强,等.MVR蒸发系统在淡盐水浓缩中的应用[J].氯碱工业,2017,53(1):37-39,42.

DONG Wenhu,SUN Yutang,CHEN Guangqiang,et al.Application of MVR evaporation system in concentration of depleted brine[J].Chlor-Alkali Industry,2017,53(1):37-39,42.

[46] 毛彦霞,张占梅,王旭东,等.机械蒸汽再压缩技术处理模拟脱硫废水的中试研究[C]// 中国电机工程学会年会.成都:[s.n.],2013.

MAO Yanxia,ZHANG Zhanmei,WANG Xudong,et al.Pilot study on mechanical vapor recompression technology for treatment of desulfurization wastewater[C]∥China Electrical Engineering Society Annual Meeting.Chengdu:[s.n.],2013.

[47] 田立辉,郭杰,郭艳丽.含盐废水MVR蒸发处理工艺设计及成本分析[J].山东化工,2016,45(18):175-177.

TIAN Lihui,GUO Jie,GUO Yanli.The design and cost analysis of mvr evaporation treatment process for treating wastewater containing salt[J].Shandong Chemical,2016,45(18):175-177.

[48] 郭萌.MVR蒸发装置与多效蒸发装置在废盐水浓缩中投资、能效的综合分析对比[J].化工管理,2015(35):23.

GUO Meng.Comprehensive analysis and comparison of investment and energy efficiency of MVR evaporation device and multi-effect evaporation device in waste brine concentration[J].ChemicalManagement,2015(35):23.

[49] 万勇刚,徐峰,田旭峰,等.国电汉川发电有限公司脱硫废水蒸发结晶项目工艺解析[J].华电技术,2017,39(10):74-76.

WAN Yonggang,XU Feng,TIAN Xufeng,et al.Process analysis of desulfurization wastewater evaporation crystallization project of Guodian Hanchuan Power Generation Co.,Ltd[J].Huadian Technology,2017,39(10):74-76.

[50] 刘秋生.烟气脱硫废水“零排放”技术应用[J].热力发电,2014,43(12):114-117.

LIU Qiusheng.Application and comparison of zero discharge technology for desulfurization waste water[J].Thermal Power Generation,2014,43(12):114-117.

[51] 李飞.脱硫废水烟道蒸发热源的选择[J].科技资讯,2018,16(3):112-113.

LI Fei.Selection of flue gas evaporation heat source for desulfurization wastewater[J].Technology Information,2018,16(3):112-113.

[52] 贺继旺,李涛,党小建,等.超超临界660 MW机组烟道蒸发结晶脱硫废水零排放技术[J].热力发电,2019,48(1):110-114.

HE Jiwang,LI Tao,DANG Xiaojian,et al.Zero discharge technology of flue gas evaporation and crystallization desulfurization wastewater in an ultra-supercritial 660 MW unit[J].Thermal Power Generation,2019,48(1):110-114.

[53] 张净瑞,梁海山,郑煜铭,等.基于旁路烟道蒸发的脱硫废水零排放技术在火电厂的应用[J].环境工程,2017,35(10):5-9.

ZHANG Jingrui,LIANG Haishan,ZHENG Yuming,et al.Application of zero liquid discharge system of the desulfurization wastewater based on bypass flue evaporation system in thermal power plants[J].Environmental Engineering,2017,35(10):5-9.

[54] 马双忱,武凯,万忠诚,等.旁路蒸发系统对燃煤电厂脱硫系统水平衡和氯平衡的影响[J].动力工程学报,2018,38(4):298-307.

MA Shuangchen,WU Kai,WAN Zhongcheng,et al.Effect of evaporation bypass on water and chlorine balance in desulfurization system of a coal-fired power plant[J].Journal of Chinese Society of Power Engineering,2018,38(4):298-307.

[55] 于伟静.脱硫废水蒸发处理系统研究[D].保定:华北电力大学(保定),2016:34.

YU Weijing.Study on FGD wastewater evaporation treatment[D].Baoding:North China Electric Power University(Baoding),2016:34.

[56] 贾绍广,黄凯,吴从越,等.蒸发塔处理脱硫废水的热量衡算[J].热力发电,2017,46(2):62-66.

JIA Shaoguang,HUANG Kai,WU Congyue,et al.Heat balance of evaporation tower for FGD wastewater treatment[J].Thernal Power Generation,2017,46(2):62-66.

[57] 康梅强,邓佳佳,陈德奇,等.脱硫废水烟道蒸发零排放处理的可行性分析[J].土木建筑与环境工程,2013(S1):238-240.

KANG Meiqiang,DENG Jiajia,CHEN Deqi,et al.Analysis on the feasibility of desulfurization wastewater evaporation treatment in flue gas duct without pollution discharge[J].Journal of Civil,Architectural Environmental Engineering,2013(S1):238-240.

[58] 晋银佳,梁秀进,孙海峰,等.某660 MW机组脱硫废水烟道蒸发系统设计及运行效果分析[J].中国电力,2018,51(12):158-162.

JIN Yinjia,LIANG Xiujin,SUN Haifeng,et al.System design and operation analysis of the desulfurization wastewater treatment with flue evaporation process for a 660 MW unit[J].China Power,2018,51(12):158-162.

[59] 马双忱,柴峰,吴文龙,等.脱硫废水烟道蒸发工艺影响因素实验研究[J].环境科学与技术,2015,38(12):297-301.

MA Shuangchen,CHAI Feng,WU Wenlong,et al.Experimental research on influencing factors of flue evaporation treatment for desulfurization wastewater [J].Environmental Science & Technology,2015,38(12):297-301.

[60] 马双忱,于伟静,贾绍广,等.燃煤电厂脱硫废水烟道蒸发产物特性[J].动力工程学报,2016,36(11):894-900.

MA Shuangchen,YU Weijing,JIA Shaoguang,et al.Properties of flue duct evaporation products by desulfurization waste water in coal-fired power plants[J].Journal of Chinese Society of Power Engineering,2016,36(11):894-900.

[61] YEBOAH N N N,ELLISON K M,MINKARA R,et al.Treatment and disposal alternative for flue gas desulfurization wastewater[C] //2015 World of Coal Ash Conference,Nashville.America:[s.n.],2015.

[62] RENEW J E,HUANG C H,BURNS S E,et al.Immobilization of heavy metals by solidification/stabilization of co-disposed flue gas desulfurization brine and coal fly ash[J].Energy & Fuels,2016,30(6):5042-5051.

[63] 王贵彦,黄素华.湿法脱硫燃煤机组“白色烟羽”节能治理[J].华电技术,2016,38(11):64-65,68.

WANG Guiyan,HUANG Suhua.Energy saving treatment of "white plume " in wet desulfurization coal-fired unit[J].Huadian Technology,2016,38(11):64-65,68.