粉煤灰陶粒的研究进展

柴春镜,宋慧平,冯政君,张金才,程芳琴

(山西大学 资源与环境工程研究所 国家环境保护煤炭废弃物资源化高效利用技术重点实验室,山西 太原 030006)

摘 要:粉煤灰是从煤燃烧后的烟气中收捕的细灰,是燃煤电厂排出的主要固体废物,危害环境和人类健康。利用粉煤灰制备陶粒是粉煤灰资源化的重要途径之一。粉煤灰陶粒因密度小、质轻、保温、隔热、耐火性好、抗震性能好、吸水率低、抗冻性能和耐久性能好等优异性能,在废水处理、废气处理、噪声控制和建筑材料等领域具有广阔的应用前景。综述了近年来粉煤灰陶粒的最新发展动态,分别对焙烧法和免烧法制备粉煤灰陶粒进行了可行性分析,介绍了粉煤灰陶粒的相关研究成果,着重介绍了生产粉煤灰焙烧陶粒和粉煤灰免烧陶粒的机理、所用原料、工艺条件及产品性能。同时提出了我国在粉煤灰综合利用过程中面临的主要问题及解决措施,并对今后的发展趋势进行展望,为粉煤灰制备陶粒的机理研究和工艺研究提供参考。粉煤灰焙烧陶粒的制备过程主要包括配料、混合、造粒、干燥、预烧、焙烧、冷却和筛分等过程;影响其性能的主要因素有原料配比、预热时间、预热温度、升温速率、煅烧时间、煅烧温度等。粉煤灰免烧陶粒的制备过程主要包括配料、混合、造粒、陈化、干燥、养护和冷却等过程;影响其性能的主要因素有原料性质、激发剂掺量、黏结剂用量、发泡剂种类及用量、养护方式、蒸养温度和养护时间等,可通过改变工艺条件,制备出不同性能和用途的产品。目前,我国的粉煤灰陶粒以焙烧型为主。焙烧陶粒具有技术成熟、产品强度高等优势,但存在能耗高、投资大、工艺复杂等缺点。因此,开发粉煤灰免烧陶粒就成为发展的新趋向。我国的免烧陶粒尚处于研制阶段,虽然产品强度低、比表面积小,但克服了焙烧法制备陶粒成本高、污染大等缺点,可将其应用于对筒压强度要求偏低、堆积密度要求偏高的场合。为提高陶粒的性能、降低成本,可从多孔免烧陶粒的外加剂选择、工艺和环境安全性等方面进行深入研究。利用粉煤灰制备陶粒,不但解决了粉煤灰的污染问题,还解决了陶粒原料的来源问题,具有重要的现实意义。

关键词:粉煤灰;焙烧陶粒;免烧陶粒

0 引 言

粉煤灰是从煤燃烧后烟气中收捕的细灰,是燃煤电厂排出的主要固体废物。大量粉煤灰堆存,不仅造成土地资源浪费,还会污染大气、水体和土壤等。我国粉煤灰主要用于混凝土的掺合料、充填材料等,综合利用技术和层次较低,产品附加值低[1]。目前,粉煤灰高附加值利用的研究主要集中在处理污水、废气,提取氧化铝、氧化硅及稀有金属,合成陶瓷材料和沸石分子筛等方面[2]。利用粉煤灰制备陶粒是发展循环经济、开辟粉煤灰综合利用方式的有效途径[3-4]

粉煤灰陶粒的制备方法主要有2种,即焙烧法和免烧法。以粉煤灰为主要原料,加入少量外加剂(如激发剂、黏结剂、成孔剂等),经混合、成球,通过焙烧或自然养护(或蒸汽养护、蒸压养护等)而成[5-6]。根据内部孔隙结构不同,粉煤灰焙烧陶粒又可分为烧结陶粒和烧胀陶粒。烧结陶粒在焙烧过程中不发生较大的体积膨胀,内部只有少量连通或开放性的气孔。烧胀陶粒会发生较大的体积膨胀,内部有大量的封闭气孔,因此具有更优异的保温性能和更低的堆积密度。粉煤灰焙烧陶粒因其质轻、高强、保温、隔热、耐火性好、抗震性能好、吸水率低、抗冻性能和耐久性能好等优异性能而被广泛用于建筑轻骨料、园艺种植、水力压裂支撑剂、建筑回填、生物滤料和墙体材料等[7-8]。目前,我国的粉煤灰陶粒以焙烧型为主。焙烧陶粒具有技术成熟、产品强度高等优势,但存在能耗高、投资大、工艺复杂等缺点。鉴于此,众多学者开始了免烧陶粒工艺的探索。目前,粉煤灰免烧陶粒的研究仍处于研制阶段,还未推广使用,其克服了焙烧法制备陶粒成本高、污染大等缺点,未来可应用于对筒压强度要求偏低、堆积密度要求偏高的场合[5]

本文分别对焙烧法和免烧法制备粉煤灰陶粒的可行性进行分析,同时对国内外不同学者的研究成果进行对比分析,并对粉煤灰陶粒的发展趋势进行展望,以期为粉煤灰陶粒的研究提供参考。

1 粉煤灰制备陶粒的可行性

早期的陶粒是由黏土烧制而成。黏土的主要成分是偏铝硅酸盐,是一类层状硅酸盐,层片由硅氧四面体和铝氧八面体组成。我国部分粉煤灰的矿物组成情况[9]见表1。粉煤灰矿物组成主要为非晶体矿物玻璃体。晶体矿物包括石英、莫来石、赤铁矿、磁铁矿等,其中,石英为主要结晶相,而莫来石的形成与原煤中硅铝矿物(如高岭石)的热分解有关。

表1 我国部分粉煤灰的矿物组成[9]

Table 1 Mineral composition of some fly ash in China[9]

矿物玻璃体莫来石石英磁铁矿赤铁矿含碳量质量分数/%50.2~79.02.7~34.10.9~18.50.4~13.80~4.71.0~23.5

粉煤灰的活性主要来自玻璃体。玻璃体含量越高,粉煤灰活性越高。

为评价粉煤灰的火山灰反应活性,分析其加工过程中技术特征,需准确测定粉煤灰中玻璃体含量。XRD的Rietveld方法常被用来测定材料中晶体矿物和玻璃体的含量。Rietveld法是利用非线性最小二乘法原理的XRD全谱拟合方法,通过精修晶体结构参数和峰形参数,以获得模拟数据与试验数据的最佳匹配,模拟结果中包括晶体矿物含量值[10]。侯新凯等[11]提出以碱-酸两段溶解来快速测定粉煤灰中玻璃体含量的化学物相分析法。我国部分粉煤灰的化学组成情况[5]见表2。粉煤灰的主要化学成分为SiO2和Al2O3,占87%以上,并含少量CaO、MgO、Fe2O3、K2O和Na2O等,其化学成分与黏土相似,均含有大量的活性SiO2和Al2O3。因此,粉煤灰的化学组成满足了制备陶粒的基本理论条件。

表2 我国部分粉煤灰的化学组成[5]

Table 2 Chemical composition of some fly ash in China[5]

组分SiO2Al2O3Fe2O3CaOMgOK2ONa2O质量分数/%33.9~59.716.5~35.11.5~19.70.8~10.40.7~1.90.6~2.90.2~1.1

1.1 粉煤灰用于焙烧陶粒的机理研究

粉煤灰烧结陶粒是利用高温使粉煤灰中的玻璃体熔融,冷却后,粉煤灰颗粒间相互黏结,得到具有一定强度的陶粒。粉煤灰烧胀陶粒与烧结陶粒的不同之处在于:烧胀陶粒存在较大的体积膨胀,即发泡物质在高温下释放气体,产生气体压力;陶粒坯体在高温作用下,会逐渐产生液相,液相具有一定的黏度;在气体压力作用下,坯体会发生塑性变形,可将产生的气体束缚,防止气体外逸。通过坯体变化和坯体内气体的共同作用,使陶粒发生理想的膨胀。

通过焙烧,原料转化形成热稳定性更强的新物相。粉煤灰中的SiO2和Al2O3在焙烧过程中可形成莫来石相,是构成陶粒骨架的成分;CaO、MgO、Fe2O3 等可作为焙烧过程中的助熔剂,降低陶粒的烧成温度;粉煤灰中的有机质、CaCO3、MgCO3、铁盐、锰盐或人为添加的可以产生气体的其他高温产气类物质是形成多孔形态的主要成分。

原料配比是陶粒烧制的关键。根据实际要求和原料性质,参照Riley三角形,通过试验确定最佳配料比。Riley三相的核心区如图1所示。图中曲线范围表示原料成分含量在此范围内,制备的陶粒产品具有较好的膨胀性[4]

图1 Riley三相示意[4]

Fig.1 Riley three phase diagram[4]

焙烧过程中,许多学者认为,陶粒膨胀是因为发生了表3的相关反应[4,12-13]

表3 粉煤灰陶粒的膨胀机理[4,12-13]

Table 3 Expansion mechanism of fly ash ceramsite[4,12-13]

序号反应类型反应式1碳与空气中的氧气反应C+O2→CO2(1)2C+O2→2CO(2)2碳酸盐的分解MgCO3→MgO+CO2 (400~500 ℃)(3)CaCO3→CaO+CO2 (900 ℃左右)(4)3氧化铁高温分解Fe2O3→2FeO+0.5O2 (1 100 ℃以上)(5)FeO+Fe2O3→Fe3O4(6)2Fe3O4→6FeO+O2 (1 100 ℃以上)(7)4碳与铁的氧化还原反应2Fe2O3+C→4FeO+CO2(8)2Fe2O3+3C→4Fe+3CO2(9)Fe2O3+C→2FeO+CO(10)Fe2O3+3C→2Fe+3CO(11)5水分蒸发H2O(l)→H2O(g)(100 ℃以上)(12)6人为添加的造孔剂、助胀剂、发泡剂、石灰石等产气物质依产气物质的种类而异

反应式(1)和(2):生料球烧制过程基本为无氧状态。在烧制初期,空气中的O2与粉煤灰中的未燃尽碳反应,生成CO和CO2

反应式(3)和(4):粉煤灰混合料内有碳酸盐存在,因此存在碳酸盐的分解反应。

反应式(5)~(7):陶粒中含有的Fe2O3在高温条件下发生自身氧化还原反应,分解生成Fe2+,释放出O2,造成陶粒膨胀。

反应式(8)~(11):由Fe2O3分解产生的O2与烧制阶段产生的还原碳、粉煤灰中的未燃尽碳反应,生成CO和CO2。若不考虑中间产物,可认为膨胀气体CO和CO2主要由碳与Fe2O3反应生成。

反应式(12):烧制过程中,陶粒生料中的水分蒸发,也会造成陶粒膨胀。

原料中产气成分不足时,可加入产气物质。

粉煤灰陶粒发生膨胀,主要是由于碳与铁发生氧化还原反应,生成CO和CO2

粉煤灰中的含碳量和碳铁比均影响陶粒的膨胀性能。根据粉煤灰的具体情况,将碳铁比控制在0.5左右。

1.2 粉煤灰用于免烧陶粒的机理研究

粉煤灰免烧陶粒主要以粉煤灰、水泥、固体激发剂(CaO、CaSO4)和黏结剂等为原料,经加工成球,通过自然养护、蒸汽养护、蒸压养护等方式而制成。粉煤灰自身基本没有水硬胶凝性能,但以粉末状态接触到水时,会在一定温度下与Ca(OH)2或其他碱土金属氢氧化物发生化学反应,生成一种具备水硬胶凝性能的化合物,从而提升陶粒强度和耐久性。

粉煤灰的主要物相为玻璃相,其活性主要来自玻璃体。固体激发剂中的CaO和水泥水化形成Ca(OH)2;利用碱性物质破坏玻璃体网状结构,使玻璃体中的活性物质SiO2和Al2O3溶出,将网络高聚体解聚成低聚度的硅铝酸盐胶体物,玻璃体中的活性SiO2和Al2O3与Ca(OH)2发生火山灰反应,生成具有胶凝性的水化硅酸钙、水化铝酸钙。铝酸盐迅速水化生成水化产物,CaSO4溶于水,与水化铝酸钙反应生成少量的钙矾石,大部分水化产物是类似托勃莫来石类的水化硅酸钙凝胶(C-S-H),这是陶粒产生一定强度的主要原因[5]。多数研究者还认为C-S-H的组成随水化进程而改变。

(13)

(14)

2CaO·SiO2+nH2OxCaO·SiO2·(n-2+x)H2O+(2-x)Ca(OH)2

(15)

(16)

(17)

(18)

2 国内外研究现状

2.1 粉煤灰焙烧陶粒

粉煤灰焙烧陶粒的制备过程如图2所示,主要包括:配料、混合、造粒、干燥、预烧、焙烧、冷却和筛分等过程。目前,很多学者开展了关于原料配比、预热时间、预热温度、升温速率、煅烧时间、煅烧温度等因素对陶粒产品性能影响的研究。陶粒生坯在焙烧前,需进行自然干燥或放入烘箱干燥,以防在焙烧过程中,因水分较高而出现胀裂。

图2 粉煤灰制备焙烧陶粒工艺流程

Fig.2 Technological process of preparing roasted ceramsite with fly ash

预烧是为了减少料坯突然进入高温时,因温度急剧变化所引起的炸裂,同时使气体缓慢产生。预烧处理不足,易造成高温焙烧时料球的炸裂。预烧温度过高或预烧时间过长,会使料坯膨胀性能不佳。

焙烧是陶粒制备过程的中心环节,直接影响陶粒制品的性能。焙烧过程是使膨胀气体逸出,产生具有一定黏度的液相,同时抑制气体逸出的动态平衡过程。不同性能要求的陶粒,其焙烧条件不同。

笔者以粉煤灰、煤矸石为主要原料,经配料、造粒、干燥、预烧、焙烧等工艺,制备出了焙烧陶粒。制备的生料球和熟料球如图3所示。

图3 焙烧陶粒的生料球和熟料球

Fig.3 Raw ball and clinker ball of roasted ceramsite

Chen等[14]以城市污泥、粉煤灰等为原料,在焙烧条件下制备出了陶粒。在此基础上,对工艺条件进行优化设计,研究了产品的重金属浸出特性研究,证明了焙烧工艺对重金属具有固化作用,并探索了吸附机理:① 陶粒具有介孔结构,具备发生阳离子交换的孔隙丰度。② 静电引力。Pb2+进入吸附剂的孔隙,被阴离子基团吸引,沉积在陶粒表面。③ 形成共价键。大量Pb2+与Si—O或Al—O—Si—O键合,嵌入吸附剂的基质框架中。

Liu等[15]以城市污泥、粉煤灰、淤泥为原料,按照质量比5∶5∶3混合,采用700 ℃预热40 min、1 210 ℃烧结30 min、15 min内冷却至1 170 ℃的工艺条件,制备出了陶粒密度等级700,吸水率6%,抗压强度6.6 MPa和强度等级40 MPa的陶粒;釉质表面,均匀分布的孔隙结构、方石英和莫来石的形成是陶粒轻质和高强度的主要原因。

Li等[16]以脱水污泥、粉煤灰、河流底泥为主要原料,采用焙烧工艺制备出了陶粒滤料,滤料符合CJ/T 299—2008《水处理用人工陶粒滤料》,浸出液中重金属含量远低于GB 5085.3—2007《危险废物鉴别标准-浸出毒性鉴别》。焙烧工艺中,烧失率、膨胀率和烧结温度之间的关系可以用三阶多项式拟合曲线进行很好地拟合,相关系数R2>0.999。焙烧工艺可分为2个阶段:烧失率在整个阶段逐渐增加;同时膨胀率在第1阶段先降低,第2阶段开始上升。

Qin等[17]以石灰泥、粉煤灰为主要原料,页岩、珍珠岩、硅藻土、锯末为外加剂,经造粒、烧结制备了陶粒,并分析添加剂、烧结温度和石灰泥含量对陶粒物理性能的影响。结果表明:烧结温度为1 050 ℃、原料配比为40%石灰泥、55%粉煤灰和5%硅藻土时,陶粒的最佳容重为0.74 g/cm3,24 h吸水率为39.03%,显气孔率为49.49%,筒体抗压强度为4.73 MPa。硅藻土含量由5%增到20%时,24 h吸水率和表观孔隙率先降后略增。因此,最佳含量为5%。根据24 h吸水率和筒体抗压强度指标,烧结温度1 050 ℃,5%硅藻土、40%石灰泥为最佳条件。

不同烧结温度下陶粒断口的扫描电镜图像(原料配比为40%石灰泥、55%粉煤灰和5%硅藻土)如图4所示。可知烧结温度1 050 ℃时,陶粒具有较好的结晶性和气孔性。

图4 不同烧结温度下陶粒断口的扫描电镜[17].

Fig.4 SEM images of fracture surface of ceramsite sintered at different temperatures[17]

粉煤灰焙烧陶粒包括烧结陶粒和烧胀陶粒2种,其部分研究成果见表4和表5。

表4 粉煤灰烧结陶粒的部分研究成果

Table 4 Some research results of fly ash sintered ceramsite

序号原料、配比工艺条件性能应用参考文献1FA∶膨润土∶生石灰∶水玻璃=50∶35∶12∶5预热温度400 ℃、预热时间25 min、烧结温度1 150 ℃、烧结时间45 min堆积密度797.65 kg/m3、比表面积22.145 m2/g、抗压强度13.5 MPa、颗粒粒径4~6 mm作为吸附剂处理含磷废水[6]2FA∶矿渣∶增塑剂=63∶27∶10预热温度700 ℃、预热时间15 min、焙烧温度1 220 ℃、焙烧时间15 min表观密度0.87 g/cm3、颗粒抗压力0.48 kN、吸水率1.6%—[21]3FA∶黏土∶玻璃粉=90∶5∶5烧成温度(1 150±25)℃,保温时间30 min容重等级900、颗粒抗压强度25 MPa、吸水率17%作为吸附剂处理含油废水[7]4FA∶污泥∶黏土=53∶40∶7烧成温度1 050 ℃,烧结时间15 min容重0.79~0.90 g/cm3、吸水率68.95%~80.01%作为吸附剂治理微污染水体[8]5FA∶铝土矿∶黏土及矿化剂=60∶20∶20先以升温速率8 ℃/min至1 000 ℃,再以升温速率2 ℃/min至1 300~1 400 ℃,最佳烧结温度1 370 ℃酸溶解度5.7%、52 MPa下破碎率5%,表观密度2.61 g/cm3用作支撑剂[22]6FA∶石灰泥∶硅藻土=55∶40∶5先以升温速率10 ℃/min至800 ℃,保温1 h,再以升温速率5 ℃/min至1 050 ℃,保温2 h容重0.74 g/cm3、24 h吸水率39.03%、显气孔率49.49%、筒压强度4.73 MPa—[17]7FA∶污水处理厂污泥∶牡蛎壳=6∶4∶0.8预热温度600 ℃、预热时间30 min、煅烧温度1 050 ℃、煅烧时间8 min抗压强度0.89 MPa、表观密度1.82 g/cm3、容重0.78 g/cm3作为吸附剂,用于人工湿地中磷的固定化[23]

续表

序号原料、配比工艺条件性能应用参考文献8黏土-B∶FA-B∶碎玻璃∶生石灰=50∶25∶18∶7预热温度500 ℃、预热时间20 min、烧结温度1 150 ℃、烧结时间15 min堆积密度489.14 kg/m3、吸水率13.2%—[24]9黏土-B∶FA-B=50∶50预热段温度500 ℃、预热时间20 min、烧结温度1 150 ℃、烧结时间15 min堆积密度782.41 kg/m3、吸水率8.62%—[24]

表5 粉煤灰烧胀陶粒的部分研究成果

Table 5 Some research results of fly ash expanded ceramisite

序号原料工艺条件性能应用参考文献1FA、黏结剂、造孔剂烧制温度1 150~1 200 ℃粒径8~13 mm、堆积密度0.8~1.2 g/cm3、密度1.5~1.8 g/cm3、孔隙率45%~50%、抗压强度4.5 MPa、破损率≤1.5%、NaOH可溶率≤1.4%、H2SO4可溶率≤1.65%作为微生物载体和吸附剂处理模拟含铬废水[25]2FA∶助胀剂∶助熔剂=(70~90)∶(5~30)∶(5~15)煅烧温度1 250 ℃、煅烧时间8 min时,膨胀性能最佳孔隙率58%~77%、24 h吸水率1.0%~4.5%、体积密度628~1 153 kg/m3、表观密度635~1 167 kg/m3、颗粒强度0.60~1.17 MPa —[26]3FA∶污泥∶黏结剂(普通红黏土)及造孔剂(红煤粉)=70∶20∶10 预热温度450 ℃、预热时间15 min、烧结温度1 150 ℃、烧结时间20 min吸水率16.69%、堆积密度704.62 kg/m3、比表面积0.14 m2/g、颗粒强度1 080 N用作建筑骨料[27]FA∶污泥∶黏结剂(普通红黏土)及造孔剂(红煤粉)=40∶50∶10 预热温度400 ℃、预热时间15 min、烧结温度1 050 ℃左右、烧结时间25 min吸水率24.77%、堆积密度551.79 kg/m3、比表面积5.85 m2/g、颗粒强度15 N用作水处理滤料[27]4FA∶高岭土∶生石灰∶玻璃粉=12∶1∶4∶2,发泡剂(NH4HCO3)添加量20%,加水量3%微波发泡2~3 min,烧结温度1 150 ℃,保温1 h显气孔率60%、闭气孔率10%、抗压强度9.5 MPa 用于含油废水的处理[28]5FA∶黏土∶石灰石=87∶10∶3煅烧温度1 200 ℃、保温1 h筒压强度6.3 MPa、体积密度1.6 g/cm3—[3]6板状刚玉粉、α-Al2O3微粉、ρ-Al2O3微粉和金属铝粉为主要原料,锯末作为造孔剂,PVA溶液为结合剂配料、混合、成型、干燥、1 550 ℃保温3 h随着锯末添加量的增加,试样的气孔率和平均孔径逐渐增大,热导率逐渐减小;<2 μm、2~6 μm和>18 μm的气孔对试样热导率有显著影响用作隔热材料[29]

1)粉煤灰烧胀陶粒的原料中包含造孔剂、助胀剂、发泡剂、石灰石等产气组分,产生的气体使加温至玻璃态的原料产生膨胀,通过对原料配方、发泡剂的选择及用量、造粒过程用水量、烧结工艺(预烧温度、预烧时间、煅烧温度、煅烧时间等)等因素进行优化试验,可生产不同堆积密度的陶粒制品;粉煤灰烧结陶粒在焙烧过程中,原料在高温下固熔黏结,不产生较大的体积膨胀。

2)焙烧制度为预热温度400~800 ℃、预热时间15~30 min、煅烧温度1 000~1 250 ℃、煅烧时间15~60 min。由于各地原料性质及所用试验设备的差异,在实际生产中,应进行试烧研究,确定最佳原料配比及焙烧制度。

3)粉煤灰烧结陶粒的结构坚实致密。虽然烧结过程有少量气体逸出和水分蒸发,造成烧结陶粒内部含少量气孔,但主体结构仍致密;烧胀陶粒发生较大的体积膨胀,内部有大量闭气孔,显气孔较少。

4)粉煤灰烧结陶粒的堆积密度较大,为750~900 kg/m3,部分产品在900 kg/m3以上;烧结陶粒的强度一般比烧胀陶粒高,高强烧结陶粒的强度可达25~40 MPa;烧结陶粒的吸水率低于烧胀陶粒。

5)采用焙烧法制备粉煤灰陶粒,既可将粉煤灰中的有毒有害有机物组分彻底高温热解为CO2、H2O等无毒无害小分子物质,又可杀灭病原微生物、致病菌,并有固化重金属的作用[18]。在应用过程中,须考虑陶粒产品的浸出毒性等环境安全性指标。焙烧陶粒生产工艺成熟,主要污染物为废气(烘干及煅烧窑烟气、堆场无组织粉尘等)、废水(脱硫除尘废水、初期雨水等)、噪声、固体废物(煤灰渣等)。因此,须配套脱硫除尘等污染防治设施。焙烧陶粒的颜色一般为暗红色、赭红色,也有灰黑色、灰白色、灰黄色等。

6)目前,关于粉煤灰焙烧陶粒应用研究较多的是将其作为水处理吸附剂、载体、建筑骨料、隔热材料和支撑剂等[19-20]。根据陶粒的应用领域,在满足使用要求的基础上,通过试验,确定最佳的原料配比及工艺条件。同种材料,孔隙率越大,强度下降。对于孔隙率和强度之间的客观矛盾,可通过工艺优化,实现指标间的统筹兼顾。

2.2 粉煤灰免烧陶粒

粉煤灰免烧陶粒的制备过程如图5所示,主要包括:配料、混合、造粒、陈化、干燥、养护和冷却等过程。影响粉煤灰免烧陶粒性能的主要因素有原料性质、激发剂掺量、黏结剂用量、发泡剂种类及用量、养护方式、蒸养温度和养护时间等,可通过改变工艺条件,制备出不同性能和用途的产品。

图5 粉煤灰制备免烧陶粒工艺流程

Fig.5 Technological process of preparing unburned ceramsite with fly ash

陈化使免烧陶粒生料中的部分水分蒸发,生料的各组分继续进行水化反应,生成更多的胶凝水化物,提高免烧陶粒的早期强度[30]。烘干可使免烧陶粒生料中的自由水逐渐脱去、固体颗粒紧缩靠拢,减少或消除水分急剧蒸发引起的热膨胀作用[30]。养护是免烧陶粒制备过程中的重要环节。养护方式有自然养护、蒸汽养护和蒸压养护等。养护方式、蒸养温度和养护时间等都会影响免烧陶粒的性能。

周靖淳[31]以粉煤灰、剩余污泥、水泥为主要原料,CaO为激发剂,水玻璃为黏结剂,碳酸氢钠为造孔剂,制备出烧结陶粒和免烧陶粒。参照GB 5085.3—2007《危险废物鉴别标准-浸出毒性鉴别》,对免烧及烧结陶粒的Cu、Zn、Cd、Hg、Cr、As等重金属指标进行检测。陶粒毒性检测结果见表6,可知2种陶粒作为水处理滤料均符合国家标准。

表6 陶粒毒性检测结果[31]

Table 6 Toxicity test results of ceramisite [31]

重金属含量/(mg·L-1)烧结陶粒免烧陶粒限定值/(mg·L-1)分析方法Cu0.002 02.411≤100原子吸收光谱Zn0.001 30.060≤100原子吸收光谱Cd0.001 40.004≤1原子吸收光谱Cr0.002 00.125≤15等离子体As0.117 00.273≤5等离子体Hg0.000 20.002≤0.1发射光谱

高淑燕[32]以粉煤灰为主要原料、生石灰和石膏为激发剂、水泥为黏结剂和激发剂(质量比为25∶5∶2∶1),以微波(480 W,5 min)作为加热方式,制备了免烧陶粒。为提高免烧陶粒的气孔率,以双氧水和碳酸铵为发泡剂,制备了具有高气孔率的免烧粉煤灰陶粒。通过调节发泡剂用量,可实现对陶粒产品宏观性能和微观结构的控制。试验原材料、无发泡剂免烧陶粒和双氧水免烧陶粒的XRD图谱如图6所示。不同双氧水用量制得的免烧陶粒的SEM照片如图7所示。研究结果表明:① 双氧水用量达10%前,陶粒的堆积密度和筒压强度均随着双氧水用量的增加而降低,之后随着双氧水用量的增加而增加;导热系数和表观密度的变化与之相似,只是转折点出现在双氧水用量为7.5%。这些性能的变化均与陶粒总气孔率的变化相反,即双氧水用量的变化通过影响陶粒总气孔率的变化而对陶粒的性能产生影响。② 通过对产品的矿物组成和微观结构进行分析,可知双氧水陶粒的主要水化产物为C-S-H。

图6 原材料及无发泡剂、微波辐照和双氧水、微波辐照制备的免烧陶粒的XRD图谱[32]

Fig.6 XRD patterns of unburned ceramsite prepared by raw material and microwave irradiation,hydrogen peroxide andmicrowave irradiation[32]

图7 不同双氧水用量制得的免烧陶粒的SEM照片[32]

Fig.7 SEMimages of unburned ceramsite prepared with different amount of hydrogen peroxide[32]

Wu等[33]以粉煤灰、水泥和石膏为主要原料,以碳酸氢铵为造孔剂,在热处理温度<300 ℃的条件下,制备了不同孔隙率的多孔吸声陶粒。研究了造孔剂用量、加热速率和养护时间对陶粒微观结构的影响。结果表明:随着成孔剂用量和升温速率的增加,孔隙率增大;而随着养护时间的延长,孔隙率减小。对于未养护的陶粒,当造孔剂用量为2.0%、升温速率为20.0 ℃/min时,其最大显气孔率可达32.67%;而对于养护72 h的材料,最大孔隙率仅为27.43%。吸声性能与孔隙率呈正相关。

粉煤灰免烧陶粒的部分研究成果见表7。

表7 粉煤灰免烧陶粒的部分研究成果

Table 7 Some research results of fly ash unburned ceramisite

序号原料工艺条件性能应用参考文献1FA∶水泥∶熟石膏∶生石灰=75.8∶15.1∶6.1∶3.0,发泡剂(NH4HCO3)添加量2.0%热处理温度30~300 ℃、升温速率20 ℃/min、养护时间0 h显气孔率32.67%、平均孔径0.36 μm、孔结构有序均匀排列用作吸声材料[37]2FA∶黏土∶生石灰∶石膏:水泥∶DT-5∶γ-Al2O3∶水玻璃∶双氧水=55∶19∶10∶2∶3∶0.5∶1.5∶5∶4陈化1 h,100 ℃烘干2 h,100 ℃恒温养护12 h比表面积16.170 m2/g、表面粗糙、孔隙率高用作AF的生物载体,处理中低浓度生活污水[38]3FA∶水泥∶膨胀珍珠岩∶其他添加剂(熟石膏、细磨生石灰粉、水玻璃等)∶三乙醇胺(界面改性剂)=213∶42∶19∶27∶9自然养护堆积密度637 kg/m3、筒压强度1.7 MPa、吸水率7.4%用作吸音材料[39]4FA∶水泥∶激发剂(生石灰和石膏)∶轻质材料=75∶10∶8∶7,塑料泡沫粒做内芯,每100 g原料用水3 mL,FeCl3·6H2O(表面改性剂)5 mL、浓度2 mol/L的水玻璃(黏结剂)10 g自然养护粉煤灰夹芯陶粒比表面积4.12 m2/g、孔隙率52.5%、耐静压强度3.87 kg、直径5~8 mm、表面粗糙、内部气孔发达作为生物滴滤塔的填料,净化NO废气[40]5以电厂FA为主要试验原料,辅以外加药剂(水泥、石灰、石膏、水玻璃)经混合、成球、陈化和养护等工序,制得免烧粉煤灰陶粒粒径5~10 mm,比表面积约8.0 m2/g 作为BAF的载体填料处理城市污水[41]6FA、石灰、二水石膏和少量黏结剂(Na2SiO4·10H2O)早期热蒸汽养护,后期自然保湿养护粒径均为10~15 mm,筒压强度3.54~7.72 MPa—[42]

续表

序号原料工艺条件性能应用参考文献7FA∶水泥∶激发剂(生石灰和石膏)∶轻质材料(膨胀珍珠岩)∶有机高分子成孔剂=71∶10∶10∶7∶2,另外每l00 g原料用水35 mL,水玻璃(黏结剂)10 g在室温25 ℃左右放置1 h,再移入烘箱100 ℃下烘2 h,最后移入压力蒸汽灭菌器内,以100 ℃进行恒温养护10 h比表面积12.74 m2/g、抗压强度3.99 MPa、堆积密度0.69 g/cm3用于曝气生物滤池的填料,进行生活污水处理[30]8FA∶水泥∶FeS(活性成分)=82.5∶15∶2.5经自然养护后2~3 h后,再经8 h高温蒸养粒径3~5 mm、堆积密度786 kg /m3、表观密度1 332 kg/m3、筒压强度5.22 MPa、吸水率21.4%、软化系数88.5%用于含重金属Cu2 +、Zn2 +、Pb2 +的废水处理[43]9FA∶Ca(OH)2(激发剂)∶轻矿粉=85∶(10~15)∶(0~5)自然养护(20 ℃、28 d、RH>90%)、低热蒸汽养护(50 ℃和75 ℃两种温度,养护时间为12 h)筒压强度4.65~5.95 MPa、松散容重808~898 kg /m3、吸水率16.9%~21.9%、软化系数81%~91%—[44]105%NaOH预处理后的FA∶CaO∶水泥∶秸秆灰∶污泥=63∶5∶20∶6∶6早期自然养护,后期蒸汽养护破碎率4.2%、堆积密度687 kg/m3、表观密度1 573 kg /m3、孔隙率52.2%、比表面积9.78 m2/g用作BAF的填料[45]115%NaOH预处理FA∶氧化钙∶水泥∶秸秆灰=58.11∶4.84∶29.05∶8成球后自然养护20 d堆积密度785 kg/m3、比表面积11.1 m2/g、破碎率2.3%用于污水处理领域[46]12给水厂残泥∶水泥∶FA∶激发剂(生石灰∶石膏=1∶1)=60∶15∶20∶5,另外每100 g原料用水30~35 mL,水玻璃2 g先室温陈化2~3 h,移入DZKW-S-6型水浴锅中80 ℃蒸养12 h,自然冷却陶粒产品在水中解体率3.66%、强度较好、吸水率31.76%、比表面积17.837 m2/g、总孔容0.058 25 cm3/g、孔径3.920 nm,破损率与磨损率之和0.35%,含泥量0.5%,堆积密度900~950 kg/m3,表观密度1 000~1 200 kg/m3用作水处理中的滤料[47]

1)目前,粉煤灰免烧陶粒所采用的主要原料为粉煤灰和水泥,并辅以激发剂、黏结剂和发泡剂等。激发剂多采用生石灰和石膏,黏结剂多采用水玻璃和黏土等。发泡剂多采用双氧水、铝粉、锌粉、碳酸氢钠和碳酸氢铵等。免烧陶粒亦可分为多孔型和致密型。实际生产和科学研究中,需根据陶粒的用途,通过试验来确定原料种类及配料比。

2)免烧陶粒没有焙烧工艺,养护方式以自然养护和蒸汽养护为主。自然养护温度为25 ℃左右,所需时间较长,为20~90 d。为使强度快速增加,大多采用蒸汽养护方式。蒸汽养护是利用水蒸气的扩散使生料球逐层发生水化反应,从而增加陶粒强度。蒸养温度为50~100 ℃,蒸养时间为8~24 h。蒸养时间越长,水化反应越彻底,陶粒强度越高。

3)粉煤灰免烧陶粒的造粒工艺、外形、堆积密度、用途与焙烧陶粒大体相同,其强度比焙烧陶粒低,尤其是多孔免烧陶粒;粉煤灰免烧陶粒的吸水率比焙烧陶粒高,一般大于15%;粉煤灰免烧陶粒密实度较高,只有加入发泡剂,才具备封闭气孔结构。

4)采用免烧法制备粉煤灰陶粒,一般需要添加水泥,其引入可以为粉煤灰的活化提供有效的碱性环境,同时水泥又是无机胶凝材料,起到固化作用,能固结重金属等有害物质,亦是免烧法产品强度的主要来源[34]。免烧陶粒克服了烧结法制备陶粒成本高、污染大等缺点。但在应用中,须考虑陶粒产品的浸出毒性等环境安全性指标。可采用生命周期评价方法、潜在风险指数方法和改进的评价方法等对陶粒产品(焙烧陶粒和免烧陶粒)的环境影响进行评价[35-36]。免烧陶粒一般为灰黑色,表面没有光泽度,不如焙烧陶粒光滑。

5)粉煤灰免烧陶粒的主要应用领域是作为水处理填料和吸音材料等,如粉煤灰免烧陶粒可作为AF、BAF、曝气生物滤池的填料用于处理生活污水,亦可用来处理NO废气等。

3 陶粒产品的技术指标

衡量陶粒产品性能的指标有:堆积密度、视密度、孔隙率、筒压强度、比表面积、显气孔率和破碎率等。根据陶粒的用途,制备出符合该用途要求的产品,并按照相关标准对其性能进行测试。

对于混凝土用的陶粒轻集料,其性能测试方法可参考GB/T 17431.2—2010《轻集料及其试验方法 第2部分:轻集料试验方法》。对于多孔陶瓷制品,其显气孔率和容重的测试方法可参考GB/T 1966—1996《多孔陶瓷显气孔率、容重试验方法》。对于多孔陶瓷制品,其室温条件下压缩强度的试验方法可参考GB/T 1964—1996《多孔陶瓷压缩强度试验方法》。对于水力压裂和砾石充填作业用的陶粒支撑剂,其性能测试方法可参考SY/T 5108—2014《水力压裂和砾石充填作业用支撑剂性能测试方法》。对于以黏土、页岩、粉煤灰、火山岩等为原料加工而成的水处理用人工陶粒滤料,其性能测试方法可参考CJ/T 299—2008《水处理用人工陶粒滤料》。对于民用与工业建筑自承重墙体及保温隔热用的陶粒加气混凝土砌块,其性能测试方法可参考JG/T 504—2016《陶粒加气混凝土砌块》。对于工业与民用建筑物墙体及保温隔热用的陶粒发泡混凝土砌块,其性能测试方法可参考GB/T 36534—2018《陶粒发泡混凝土砌块》。对于以硅酸盐矿物等原料加工而成的陶粒滤料,其性能测试方法可参考QB/T 4383—2012《陶粒滤料》。对于公路工程水泥混凝土用页岩陶粒,其性能测试方法可参考JT/T 770—2009《公路工程 高强页岩陶粒轻骨料》。

4 存在问题及解决措施

我国粉煤灰的产生量很大,通常每消耗1 t煤就会产生250~300 kg粉煤灰。每年燃煤电厂因燃煤产生的粉煤灰为6亿t,约占世界粉煤灰总产量的1/2,而目前我国粉煤灰综合利用率仅为70%[48]

我国粉煤灰综合利用经历了“以储为主”—“储用结合”—“以用为主”3个发展阶段。目前,粉煤灰综合利用主要方式有生产水泥、混凝土及其他建材产品,应用于建筑工程、筑路、改良土壤、回填、生产生物复合肥、提取物质实现高值化利用等,涉及建材、建筑、冶金、化工、农业等领域。

我国在粉煤灰综合利用过程中,面临的主要问题有:① 粉煤灰产地和市场存在地理隔离;② 综合利用技术和层次较低;③ 产品品位低、附加值低;④ 粉煤灰综合利用标准体系不完备;我国粉煤灰综合利用相关标准主要集中在传统建材利用方面,缺少在分类、高价值产品及非建材利用方面(环保、农业、填埋等方面)的标准;⑤ 缺少操作性更强、强制性应用的政策等。

建议采取的措施:① 实施运输费用优惠政策,扩大粉煤灰产品运输经济半径,增加拓宽粉煤灰的销路和应用范围;② 延伸粉煤灰综合利用产业链,进一步提高粉煤灰的综合利用率以及利用水平;③ 开发高附加值利用技术,不仅可以扩展粉煤灰利用途径,还能提高粉煤灰的利润空间,充分调动非煤企业的投资;④ 完善粉煤灰综合利用的相关标准体系;⑤ 政府提供更为实际的支持手段[48]

5 结 语

利用粉煤灰制备陶粒是粉煤灰资源化的重要途径之一。焙烧法是目前普遍采用的粉煤灰陶粒的生产方法,技术成熟,但存在能耗高、污染大、成本高、建厂难立项等弊端。因此,开发粉煤灰免烧陶粒就成为发展的新趋向。我国的免烧陶粒尚处于研制阶段,产品存在强度低、比表面积小等缺点,为提高陶粒的性能,降低成本,可从多孔免烧陶粒的外加剂选择、工艺和环境安全性等方面进行深入研究。利用粉煤灰制备陶粒,不但解决了粉煤灰的污染问题,还解决了陶粒原料的来源问题,具有重要的现实意义。

参考文献(References):

[1] SHEN Yinong,HUANG Jiantao,MA Xiaobing,et al.Experimental study on the free shrinkage of lightweight polymer concrete incorporating waste rubber powder and ceramsite[J].Composite Structures,2020,242:112152.

[2] 尹月,马北越,张战,等.粉煤灰高附加值利用的研究现状[J].材料研究与应用,2015,9(3):158-161.

YIN Yue,MA Beiyue,ZHANG Zhan,et al.Research situation of high value utilization of coal ash[J].Materials Research and Application,2015,9(3):158-161.

[3] 李亮.粉煤灰陶粒制备试验研究[J].硅酸盐通报,2017,36(5):1577-1581.

LI Liang.Experimental study on preparation of fly ash ceramsite[J].Bulletin of the Chinese Ceramic Society,2017,36(5):1577-1581.

[4] 习嘉晨,向晓东,秦显显,等.工业固废制备陶粒的机理探讨[J].中国废钢铁,2015(5):18-22.

XI Jiachen,XIANG Xiaodong,QIN Xianxiano,et al.Study on the mechanism of ceramsite prepared with solid waste[J].Iron & Steel Crap of China,2015(5):18-22.

[5] 温久然.免烧粉煤灰陶粒的工艺研究[D].西安:长安大学,2003.

WEN Jiuran.Study on the technology of fly ash non-sintering ceramsite[D].Xi′an:Chang′an University,2003.

[6] 蒋丽.粉煤灰烧结陶粒制备及其强化废水中磷酸盐去除的试验研究[D].长沙:湖南大学,2012.

JIANG Li.Fly ash sintered ceramiste preparation and enhanced removal of phosphate in wastewater[D].Changsha:Hu′nan University,2012.

[7] 陈钰.粉煤灰陶粒的制备及处理含油废水的研究[D].北京:北京化工大学,2004.

CHEN Yu.Thestudy of manufacture of fly ash haydite and treating oily waste water with fly ash haydite[D].Beijing:Beijing University of Chemical Technology,2004.

[8] 蔡昌凤,褚倩,王玉莲.粉煤灰/工业污泥烧结陶粒的制备与应用[J].上海环境科学,2006,25(2):51-54.

CAI Changfeng,CHU Qian,WANG Yulian.Preparation and application of sintered fly ash/industrial sludge ceramsite[J].Shanghai Environmental Sciences,2006,25(2):51-54.

[9] 郑楠.以粉煤灰沸石制备外墙隔热保温涂料的实验研究[D].太原:山西大学,2014.

ZHENG Nan.Experimentalresearch on the preparation of thermal-insulating coating using fly ash zeolite[D].Taiyuan:Shanxi University,2014.

[10] KNIESS C T,PRATES P B,DE LIMA J C,et al.Quantitative determination of the crystalline phases of the ceramic materials utilizing the rietveld method[J].Materials Science Forum,2010,660/661:164-169.

[11] 侯新凯,梁爽,刘柱燊,等.粉煤灰中玻璃体含量的化学物相分析[J].硅酸盐通报,2017,36(11):3587-3593.

HOU Xinkai,LIANG Shuang,LIU Zhushen,et al.Chemical phase analysis of glass content in fly ash[J].Bulletin of the Chinese Ceramic Society,2017,36(11):3587-3593.

[12] 郗斐,赵大传.轻质/超轻粉煤灰陶粒的研制及陶粒膨胀机理的探讨和应用[J].功能材料,2010,41(3):518-522.

XI Fei,ZHAO Dachuan.Preparation of ultra-lightweight fly ash ceramic(ULFAC),investigation and application of the bloating mechanism[J].Journal of Functional Materials,2010,41(3):518-522.

[13] 陈烈芳.烧胀粉煤灰陶粒的膨胀机理研究[J].砖瓦,2005(11):7-11.

CHEN Liefang.Study on the expansion mechanism of expanded fly ash ceramsite[J].Brick & Tile,2005(11):7-11.

[14] CHEN Yuchi,SHI Jingwen,RONG Hao,et al.Adsorption mechanism of lead ions on porous ceramsite prepared by co-combustion ash of sewage sludge and biomass[J].Science of the Total Environment,2020,702:135017.

[15] LIU Junzhe,LIU Rui,HE Zhimin,et al.Preparation and microstructure of green ceramsite made from sewage sludge[J].Journal of Wuhan University of Technology-Materials Science Edition,2012,27(1):149-152.

[16] LI Tianpeng,SUN Tingting,LI Dengxin,et al.Preparation,sintering behavior,and expansion performance of ceramsite filter media from dewatered sewage sludge,coal fly ash,and river sediment[J].Journal of Material Cycles and Waste Management,2018,20:71-79.

[17] QIN Juan,CUI Chong,CUI Xiaoyu,et al.Preparation and characterization of ceramsite from lime mud and coal fly ash[J].Construction and Building Materials,2015,95:10-12.

[18] 李路娟,李天鹏,李玉龙.以固体废弃物为原料烧制水处理陶粒材料的影响因素研究[J].环境科技,2020,33(1):27-30.

LI Lujuan,LI Tianpeng,LI Yulong.Study on theinfluence factors of the preparation of ceramsite material for water treatment from solid wastes[J].Environmental Science and Technology,2020,33(1):27-30.

[19] SHI Yan,SUN Ken,QI Xuebin,et al.The fabrication of bio-ceramsite for the removal of heavy metals and its toxicity to bacteria[J].Journal of Wuhan University of Technology-Materials Science Edition,2015,30(3):649-654.

[20] DONG Jiaxin,WANG Yuhong,WANG Lijian,et al.The performance of porous ceramsites in a biological aerated filter for organic wastewater treatment and simulation analysis[J].Journal of Water Process Engineering,2020,34:101134.

[21] 刘军,李振国,王东山,等.焙烧制度对矿渣粉煤灰陶粒物理性能的影响[J].沈阳建筑大学学报(自然科学版),2005,21(5):511-514.

LIU Jun,LI Zhenguo,WANG Dongshan,et al.Influence of sinter system on physical properties of slag-fly ash lightweight aggregate[J].Journal of Shenyang Jianzhu University(Natural Science),2005,21(5):511-514.

[22] WU Xiulan,HUO Zhezhe,REN Qiang,et al.Preparation and characterization of ceramic proppants with low density and high strength using fly ash[J].Journal of Alloys and Compounds,2017,702:442-448.

[23] CHENG Gong,LI Qionghui,SU Zhan,et al.Preparation,optimization,and application of sustainable ceramsite substrate from coal fly ash/waterworks sludge/oyster shell for phosphorus immobilization in constructed wetlands[J].Journal of Cleaner Production,2018,175:572-581.

[24] 郗斐.超轻/轻质粉煤灰陶粒的研制[D].济南:山东大学,2011.

XI Fei.The preparation of ultra-lightweight/lightweight fly ash ceramic[D].Jinan:Shandong University,2011.

[25] 付江盛,成岳,唐燕超,等.粉煤灰多孔陶粒在水处理中的应用研究[J].环境科学与技术,2008,31(11):112-114.

FU Jiangsheng,CHENG Yue,TANG Yanchao,et al.Application of fly ash porous ceramsite to wastewater treatment[J].Environmental Science & Technology,2008,31(11):112-114.

[26] 邓红卫,杨英姿,高小建,等.高强粉煤灰烧胀陶粒制备的影响因素研究[J].青岛理工大学学报,2009,30(4):70-74.

DENG Hongwei,YANG Yingzi,GAO Xiaojian,et al.Research on factors to affect the preparation of high-strength ceramsite in low absorption[J].Journal of Qingdao Technological University,2009,30(4):70-74.

[27] 邵青,周靖淳,王俊陆,等.粉煤灰与污泥制备陶粒工艺研究[J].中国农村水利水电,2015(4):138-142.

SHAO Qing,ZHOU Jingchun,WANG Junlu,et al.Research on preparation technology of ceramsite with fly ash and sewage sludge[J].China Rural Water and Hydropower,2015(4):138-142.

[28] 董诚,许珂敬,李芳,等.利用粉煤灰制备轻质多孔陶粒工艺研究[J].山东理工大学学报(自然科学版),2008,22(6):54-56.

DONG Cheng,XU Kejing,LI Fang,et al.Preparation of light-weight porous hadites using fly ash[J].Journal of Shandong University of Technology(Natural Science Edition),2008,22(6):54-56.

[29] 刘静静,李远兵,李亚伟,等.隔热材料的热导率与孔径分布的相关性研究[J].耐火材料,2016,50(5):335-339.

LIU Jingjing,LI Yuanbing,LI Yawei,et al.Correlation of thermal conductivity and pore size distribution of insulating refractories[J].Refractories,2016,50(5):335-339.

[30] 李猛.新型免烧陶粒的制备及其对生活污水处理的研究[D].青岛:青岛理工大学,2010.

LI Meng.Preparation of new type of non-burned ceramic and using it treating domestic sewage research[D].Qingdao:Qingdao University of Technology,2010.

[31] 周靖淳.免烧及烧结污泥陶粒滤料的开发及应用技术研究[D].武汉:武汉大学,2017.

ZHOU Jingchun.Research on the development and application technology of the unburned and burned sludge ceramsite filter[D].Wunhan:Wunhan University,2017.

[32] 高淑燕.高气孔率的免烧粉煤灰陶粒的制备及其隔热性能研究[D].柳州:广西科技大学,2019.

GAO Shuyan.Preparation of high-porosity sintering-free fly ash ceramsite and its thermal insulation properties[D].Liuzhou:Guangxi University of Science and Technology,2019.

[33] WU Huiqin,ZHAN Teng,PAN Rongjun,et al.Sintering-free preparation of porous ceramsite using low-temperature decomposing pore former and its sound-absorbing performance[J].Construction and Building Materials,2018,171:367-376.

[34] 杨洁,刘学应.陶粒制备的研究进展[J].建筑节能,2013,41(5):45-47.

YANG Jie,LIU Xueying.Progress on the preparation of ceramsite[J].Building Energy Efficiency,2013,41(5):45-47.

[35] ZHAO Hailong,LIU Fang,LIU Hanqiao,et al.Comparative life cycle assessment of two ceramsite production technologies for reusing municipal solid waste incinerator fly ash in China[J].Waste Management,2020,113:447-455.

[36] SHI Yifei,LI Yue,YUAN Xueliang,et al.Environmental and human health risk evaluation of heavy metals in ceramsites from municipal solid waste incineration fly ash[J].Environ Geochem Health,2020,http://doi.org/10.1007/s10653-020-00639-7.

[37] 黄焕晟,吴辉琴,张腾,等.多孔吸声陶粒的制备及孔结构可控研究[J].广西大学学报(自然科学版),2018,43(6):2292-2298.

HUANG Huansheng,WU Huiqin,ZHANG Teng,et al.Preparation of porous sound absorbing ceramsite and controllable pore structure[J].Journal of Guangxi University(Natural Science Edition),2018,43(6):2292-2298.

[38] 李风琴.免烧粉煤灰陶粒的制备及其在厌氧滤池中的应用研究[D].南昌:南昌大学,2006.

LI Fengqin.Preparation of unbaked fly ash ceramsites and application research in anaerobic biofilter[D].Nanchang:Nanchang University,2006.

[39] 朱万旭,酆磊,周红梅,等.新型免烧粉煤灰陶粒的研制及应用浅析[J].混凝土,2017(5):59-61.

ZHU Wanxu,FENG Lei,ZHOU Hongmei,et al.Analysis on the development and application of a new type of ash haydite[J].Concrete,2017(5):59-61.

[40] 孙霞.粉煤灰夹芯陶粒的制备及其在生物滴滤塔反硝化法净化NO废气的应用研究[D].青岛:青岛理工大学,2010.

SUN Xia.Preparation of sandwich ash ceramsites and application research in biofilter for nitric oxide denitrification[D].Qingdao:Qingdao University of Technology,2010.

[41] 彭位华,桂和荣,向贤,等.免烧粉煤灰陶粒作为BAF填料处理城市污水[J].环境科学与技术,2011,34(8):73-75.

PENG Weihua,GUI Herong,XIANG Xian,et al.Application of fly ash porous ceramsite to wastewater treatment[J].Environmental Science & Technology,2011,34(8):73-75.

[42] 邹志祥,张瑜,董众兵.粉煤灰制免烧陶粒的实验研究[J].煤炭转化,2007,30(2):73-75.

ZOU Zhixiang,ZHANG Yu,DONG Zhongbing,et al.Experimental study on preparation of non-sintered ceramsite from fly ash[J].Coal Conversion,2007,30(2):73-75.

[43] 邹正禹,刘阳生.粉煤灰免烧陶粒制备及其重金属废水净化性能[J].环境工程学报,2013,7(10):4054-4059.

ZOU Zhengyu,LIU Yangsheng.Preparation of non-sintered ceramsite from coal fly ash and its performance on heavy metals removal[J].Chinese Journal of Environmental Engineering,2013,7(10):4054-4059.

[44] 朱宏军,高振林,姜德民.免烧粉煤灰建筑陶粒的研制[J].北方工业大学学报,2002,14(1):93-96.

ZHU Hongjun,GAO Zhenlin,JIANG Demin,et al.Study on non-burning fly ash building ceramisite[J].Journal of North China University of Technology,2002,14(1):93-96.

[45] 黄旭.新型粉煤灰免烧陶粒的制备及其在BAF中的应用研究[D].哈尔滨:哈尔滨工业大学,2012.

HUANG Xu.Study on the development and application in BAF of the new unburned fly ash ceramsite[D].Harbin:Harbin Institute of Technology,2012.

[46] 邱珊,黄旭,刘子述,等.秸秆灰为添加剂的粉煤灰免烧陶粒的试制[J].哈尔滨工业大学学报,2013,45(2):36-40.

QIU Shan,HUANG Xu,LIU Zishu,et al.Utilization of straw ash as an additive for making unburned fly ash ceramsite[J].Journal of Harbin Institute of Technology,2013,45(2):36-40.

[47] 刘丹妮,戴友芝,许友泽,等.给水厂残泥免烧陶粒的制备与性能表征[J].非金属矿,2019,42(1):100-103.

LIU Danni,DAI Youzhi,XU Youze,et al.Preparation and characterization of unburned ceramsite fom water treatment residuals[J].Non-Metallic Mines,2019,42(1):100-103.

[48] 姜龙.燃煤电厂粉煤灰综合利用现状及发展建议[J].洁净煤技术,2020,26(4):31-39.

JIANG Long.Comprehensiveutilization situation of fly ash in coal-fired power plants and its development suggestions[J].Clean Coal Technology,2020,26(4):31-39.

Research progress on the fly ash ceramsite

CHAI Chunjing,SONG Huiping,FENG Zhengjun,ZHANG Jincai,CHENG Fangqin

(State Environmental Protection Key Laboratory of Efficient Resource Utilization Techniques of Coal Waste,Institute of Resources and Environmental Engineering,Shanxi University,Taiyuan 030006,China)

Abstract:Fly ash is the fine ash collected from the flue gas after coal combustion,which is the main solid waste discharged from coal-fired power plants,and has great harm to the environment and human health.The preparation of ceramsite by using fly ash is one of the important ways to recycle fly ash.Because of its excellent properties such as small density,light weight,heat preservation,heat insulation,good fire resistance,good anti-seismic performance,low water absorption,good anti-freezing performance and good durability,the fly ash ceramsite has wide application prospects in the fields of waste water treatment,waste gas treatment,noise control and building materials,etc.In this review,the latest development of fly ash ceramisite in recent years was reviewed and the feasibility of preparing fly ash ceramsite by roasting process and unburned process was analyzed.The related research results of fly ash ceramisite were introduced.The mechanism,raw materials,technological conditions and product properties of producing roasting ceramsite and unburned ceramsite by using fly ash were emphatically introduced.At the same time,the main problems and solutions in the comprehensive utilization of fly ash in China were put forward and the future development trend was forecasted,so as to provide reference for the research on the mechanism and technology of preparing ceramsite with fly ash.The results show that the preparation process of fly ash roasted ceramsite mainly includes batching,mixing,granulation,drying,pre-firing,roasting,cooling and screening.The main factors that affect the properties of the roasted ceramsite are raw material ratio,preheating time,preheating temperature,heating rate,calcination time,calcination temperature,etc.The preparation process of fly ash unburned ceramsite mainly includes batching,mixing,granulation,aging,drying,curing and cooling.The main factors that affect the properties of the unburned ceramsite are the properties of raw materials,the amount of activator,the amount of binder,the type and amount of foaming agent,curing method,steam curing temperature and curing time.The products with different properties and uses can be prepared by changing the process conditions.At present,fly ash ceramsite is mainly roasted ceramsite.Roasted ceramsite has the advantages of mature technology and high product strength,but it has the disadvantages of high energy consumption,large investment and complex process.Therefore,the development of fly ash unburned ceramsite has become a new trend.The unfired ceramsite is still in the development stage,and the products have the disadvantages of low strength and small specific surface area.It overcomes the disadvantages of high cost and pollution in the preparation of ceramsite by roasting method,and can be used in the situation where the requirements of cylinder compression strength is low and bulk density is high in the future.In order to improve the performance of ceramsite and reduce the cost,the selection of additives,technology and environmental safety of porous unburned ceramsite can be studied in depth.The preparation of ceramsite with fly ash not only solves the pollution problem of fly ash,but also solves the source of ceramsite raw materials,which has important practical significance.

Key words:fly ash;roasted ceramsite;unburned ceramsite

中图分类号:X752

文献标志码:A

文章编号:1006-6772(2020)06-0011-12

收稿日期:2020-09-02;责任编辑:白娅娜

DOI:10.13226/j.issn.1006-6772.EP20090201

移动阅读

基金项目:山西省揭榜招标项目(20191101007);山西省重点研发计划资助项目(201903D421002);襄垣县固废综合利用科技攻关项目(2018XYSDYY-11)

作者简介:柴春镜(1984—),女,山西运城人,讲师,研究方向为固废资源化利用。E-mail:156163875@qq.com。

通讯作者:宋慧平,教授,从事固废资源化利用研究。E-mail:songhp@sxu.edu.cn

引用格式:柴春镜,宋慧平,冯政君,等.粉煤灰陶粒的研究进展[J].洁净煤技术,2020,26(6):11-22.

CHAI Chunjing,SONG Huiping,FENG Zhengjun,et al.Research progress on the fly ash ceramsite[J].Clean Coal Technology,2020,26(6):11-22.