高钠煤灰烧结特性研究进展

黄东东1,2,张守玉1,常 明1,石 岳1,林春雨1,徐嘉庆1,张培争1,张 华1,2,胡 南3

(1.上海理工大学 能源与动力工程学院,上海 200093;2. 上海市动力工程多相流动与传热重点实验室,上海 200093;3.长春工程学院,吉林 长春 130012)

要:中国新疆准东煤具有储量巨大、开采成本低、挥发分高、硫含量低等特点,是优质的动力用煤。但准东煤钠含量高,燃烧利用时易在受热面上形成烧结性积灰,产生严重的结渣,极大限制了高钠煤的开发利用。因此,要实现高钠煤的清洁高效利用,需充分认识高钠煤灰的烧结特性。总结了高钠煤积灰结渣机理,概述了高钠煤灰烧结机制,探讨了二者之间的内在关联。高钠煤在燃烧过程中,煤中碱金属(主要为钠)释放并以Na2SO4、NaCl及Na的形式存在于烟气中,与受热面接触并于其上冷凝形成黏性内白层,内白层捕获飞灰颗粒后反应生成低熔点化合物,其烧结温度降低,使锅炉受热面上发生沾污增强型的“沾污烧结”过程。高钠煤灰的烧结过程包含固相烧结、液相烧结和气相烧结3种方式,对煤灰烧结过程的影响因素包括反应温度、化学组成、煤灰粒径、反应气氛、添加剂种类、锅炉设计和锅炉运行工况等。其中添加剂按氧化物种类可分为碱性氧化物和酸性氧化物,一般情况下碱性氧化物可以降低煤灰烧结温度,酸性氧化物可提高煤灰烧结温度。未来对于提高高钠煤灰烧结温度的研究方向可从新型添加剂出发,找到既能固定烟气中的钠,又能与灰渣中的低熔点含钠矿物质反应生成高熔点化合物的单一或混合成分的添加剂。同时,关于钠蒸气对积灰结渣在微观层面上的动态特性的影响机制也需进一步研究。概述了煤灰烧结温度的测量方法,热导率分析法、压力测量法、热机械分析法、筛分法和压降法,其中压降法是目前为止测量烧结温度较为准确的方法。介绍了上海理工大学碳基燃料洁净转化实验室在高钠煤灰烧结特性方面的研究方向,以期为解决燃用高钠煤锅炉积灰结渣问题提供参考。

关键词:高钠煤;碱金属;烧结;积灰结渣;烧结机制

0 引 言

高钠煤是指煤中钠含量(以灰分计)大于2%的煤种,在中国、澳大利亚、美国等国均有分布[1-4]。中国的高钠煤储量巨大,埋藏深度浅、开采成本低、挥发分高、硫含量低,是优质的动力用煤,广泛分布于新疆、广西和重庆等地区[5-7],特别是新疆准东地区储量达到3.9×1011 t,占中国储煤量(5×1012~6×1012 t)的7%~8%,是中国目前最大的整装煤田[4,8]。燃用高钠煤的锅炉会出现结渣、沾污、积灰和腐蚀等问题,严重影响了锅炉的正常运行[9-12]

燃用高钠煤造成的锅炉积灰结渣问题主要由煤灰在受热面上发生烧结引起。高钠煤碱金属含量高,煤灰烧结温度较低,易在受热面上发生烧结,导致严重积灰结渣。影响烧结的元素是Na、K、S、Ca、Fe,其中引起煤灰发生烧结的主要元素是Na[13-18]。煤中Na元素经历蒸发-冷凝过程并在灰颗粒和受热面表面形成黏性内白层[19-21],内白层捕获飞灰颗粒后生成低熔点化合物,从而降低其本身烧结温度,使得煤灰在较低烟气温度下也能在受热面上发生烧结,而且烧结后产生的积灰沉积层结构致密,抗碎强度大,使锅炉吹灰极为困难,造成严重的烧结性结渣[22-24],因此,对高钠煤灰的烧结机理及其与积灰结渣之间关系的研究至关重要。

针对高钠煤灰易发生烧结,受热面上积灰结渣严重问题,国内外学者从反应温度[19,25-31]、化学组成[32-33]、煤灰粒径[14,34-35]、反应气氛[33,36-40]及添加剂种类[38,41-56]、锅炉设计[57-59]和锅炉运行工况[57-59]等方面对影响高钠煤灰结渣的因素进行了研究,取得了大量研究成果。为充分认识高钠煤灰的烧结特性,本文在前人研究的基础上,重点总结了高钠煤积灰结渣机理、烧结特性及两者之间的关系、煤灰烧结过程的影响因素及烧结温度的测试方法,以应对高钠煤燃用过程中积灰结渣问题,为高钠煤的燃烧利用提供指导。

1 高钠煤积灰结渣过程

1.1 高钠煤积灰结渣机理

高钠煤积灰结渣是一个复杂的物理化学过程,主要包含2个方面[60]。在燃烧过程中,一方面高钠煤中的矿物质经气化、成核、凝结、团聚及爆裂等过程形成粒径不同的粗、细灰颗粒,随后通过热迁移、粒子扩散或惯性迁移运动至受热表面[61-63]。另一方面是气态活性Na成分的生成。800 ℃时,煤中可溶性钠及有机钠开始挥发[27],大部分Na元素以Na、Na2O、NaOH及NaCl形式释放到烟气中[64],煤中硫元素以SO2的形式释放。温度升至1 100 ℃时,煤中剩余的可挥发性钠及硫元素以非氯化物和SO2形式释放出。随着温度升高至1 450 ℃,挥发到烟气中的钠和含硫氧化物反应完生成气态Na2SO4和NaCl。燃烧过程形成的细微灰颗粒及烟气中的气态化合物(Na2SO4、NaCl)选择性或熔融性地沉积于受热表面,形成内白层。此外,气态化合物(Na2SO4、NaCl)冷凝于固态或熔融态的灰颗粒表面形成黏性涂层,颗粒间发生惯性碰撞形成团聚颗粒。随着内白层厚度增加,逐渐形成具有黏性的烧结层。烧结层对烟气中的固态及熔融态的灰颗粒具有捕获能力,使得灰颗粒黏附于受热表面形成熔融层,积灰机理如图1所示[14,65-69]。烧结层和熔融层有明显的界限,烧结层的灰颗粒较小,粒径小于10 μm;熔融层的灰颗粒较大,粒径分布在20~50 μm[70-71]

图1 由钠元素引起的高钠煤积灰结渣机理[14,65-69]

Fig.1 Ash slagging mechanism of high-sodium coal caused by sodium[14,65-69]

内白层的形成是高钠煤产生积灰结渣的基本条件,其具有黏性,可捕获飞灰颗粒,使飞灰颗粒沉积在受热面。高钠煤燃烧后烟气中的气态含钠化合物是产生内白层的主要原因:① 在高温下煤中钠元素挥发,与其他化合物反应形成含钠硫酸盐,该硫酸盐易在受热面冷凝形成液态黏性层[72];② 在受热面冷凝的含钠硫酸盐易与铁及钙的化合物反应形成低熔点化合物,进一步促进内白层的形成,如Na2O·SiO2·CaO、Na3Fe(SO4)3和Na3Fe(SO4)3[73],此外,形成的低熔点化合物也是熔融层的主要成分。

1.2 积灰结渣与烧结的关系

锅炉的积灰结渣主要由煤灰发生烧结引起[74-75],受热面上的碱金属冷凝物的烧结是一个重要阶段[76]。烧结温度是评价煤燃烧过程中积灰结渣倾向的一个重要指数,烧结温度低的灰积灰结渣倾向高,反之亦然[32]。高钠煤燃烧过程中产生的气态含钠化合物会凝结在受热面上形成内白层,内白层具有黏性,可捕获飞灰颗粒,在受热面上产生低熔点矿物质,进而降低煤灰烧结温度,促进积灰结渣[24]。高钠煤灰中的结晶矿物主要为硅灰石(CaO·SiO2)和钙长石(CaO·Al2O3·2SiO2)[14],其熔点约为1 540 ℃,而硅灰石会与煤灰中碱金属物质反应生成共晶混合物,如辉石((Ca,Mg,Fe)Si2O6)、绿辉石(NaCaMgAl(Si2O6)2)和透长石(K(AlSi3O8))等[77],共晶混合物的存在导致煤灰熔点降到900~1 000 ℃。硅酸盐类物质的烧结温度为熔融温度的0.8~0.9倍[78],故煤灰烧结温度也相应降到720~900 ℃。燃用高钠煤的锅炉受热面上的温度一般都能达到900 ℃,故锅炉受热面上沉积的煤灰会发生烧结,导致严重的积灰结渣,积灰结渣过程可称为沾污增强型的“沾污烧结”过程[15,79-80]

煤灰发生烧结后,颗粒间的接触面增大,变得更加致密,抗碎强度增高,使吹灰困难,造成锅炉受热面积灰严重无法正常运行[9]。许明磊等[81]在循环流化床垃圾焚烧炉内对烟道沿程积灰的烧结特性进行了研究,发现积灰在低于灰熔点的温度下即发生烧结,在气固和多相反应的作用下形成难以清除的沾污性积灰。Raask等[82]发现,燃煤锅炉受热面产生灰沉积的主要原因是含碱物质冷凝并烧结,积灰沉积主要由烧结引起,产生的沉积物难以通过吹灰除去。在生物质方面也有相似结论,Li等[83]研究生物质的飞灰沉积现象,发现探针温度为650 ℃时的飞灰沉积率高于600 ℃时,其原因是生物质灰在650 ℃时出现了烧结现象,增加了颗粒间的黏附,导致积灰加剧。

2 高钠煤灰烧结机制

2.1 烧结机理

烧结是指粉末状态物质受热后发生的互相黏结成团现象,烧结后粉状物料的颗粒会变粗即结块,物料结实致密,容重增加。这些变化是由于烧结过程中发生了物质的迁移,使物料内部空隙减少,其晶格缺陷被校正以及晶体颗粒成长或聚集再结晶的结果。因此烧结现象具有2个基本特征:致密和结块,即烧结物的松装密度增加和粒度增大[84]。煤灰的烧结过程是相邻粉状煤灰颗粒在较大的表面自由能作用下发生黏结的自发且不可逆过程,系统表面能降低是推动该过程进行的基本动力[36]。粉状颗粒具有的表面能与其比表面积成正比,比表面积越大,表面能越高。由最小能量原理可知,表面能会自发地向最低能量的状态变化,且伴随着系统表面能下降。图2为灰颗粒烧结过程示意[53,85],煤灰颗粒发生烧结时,封闭孔逐渐减少,开放孔逐渐变大,并伴随新的气体通道形成[86]

图2 灰颗粒烧结过程

Fig.2 Ash particle sintering process

准东煤灰发生烧结前颗粒间紧密排列,尺寸分布均匀,颗粒轮廓明显,没有明显的烧结颈出现;在烧结初期,支撑粉体结构的是大颗粒,小颗粒数量变少,依附在大颗粒上,整体呈光滑的晶体状态,孔隙数量增长迅速,但抗碎强度几乎不变;在烧结中后期,颗粒间发生明显的共熔聚合现象,烧结结构发展成型,烧结强度明显提高,煤灰虽向致密化发展,但孔隙已非常发达,形成较多肉眼可见的孔隙[87-88]

2.1.1 烧结类型

根据物质传递过程,烧结主要分为:气相烧结、固相烧结及液相烧结[87]

气相烧结[89]:加热时物质粉粒的某一部分蒸发为气相并在相邻的颗粒间发生凝结,导致两颗粒间出现烧结颈,即“蒸发-凝结”过程。固相烧结[90]:随着粉体升温,构成粉体颗粒的微观粒子(原子、离子等)或空格点(缺位)以表面扩散、界面扩散或体内扩散等方式进行物质传递,即“扩散传质”过程。液相烧结[91]:在烧结过程体系中出现部分液相物质,由于粉粒的表面状态不同且存在毛细管压,粉粒逐渐被挤压,导致其表面曲率较大处的质点熔于液相物质。质点经液相扩散后在曲率较大、凹面或粉粒接触的颈部表面析出,即“溶入-析出”过程。

高钠煤灰在受热面上发生的烧结性积灰结渣包含气相烧结、固相烧结和液相烧结3种方式。Zhou等[80]将准东煤放入典型试验规模燃煤锅炉中燃烧,炉内插入煤灰沉积探针,在炉温为1 298 K时收集灰沉积物,研究不同探针表面温度对煤灰沉积的影响,发现探针表面温度为733~594、714~571 K时,灰沉积过程中同时存在液相烧结和气相烧结;探针表面温度671~507 K时,灰沉积过程中仅存在固相烧结。

2.1.2 烧结特性参数

煤灰的烧结特性广泛用于评价煤的结渣倾向,反映煤灰烧结特性的参数主要有烧结强度、孔隙率、比表面积、特征温度等[88]

烧结强度,又称径向压溃强度,是通过施加径向压力使试样出现破裂的最小强度。孔隙率一般指材料的孔隙体积占其在自然状态下总体积的百分比。由于煤灰烧结会使封闭孔变小,开放孔变大,在表征煤灰烧结特性时,孔隙率一般指开放孔体积占总体积的百分比。比表面积指单位质量物料的总面积,是鉴定烧结程度的一个重要参数,因为在烧结形成多孔隙结构时,加热会使灰样产生径向膨胀和收缩。特征温度包含初始烧结温度ITs(Initial sintering temperature)、烧结峰值温度PTs(Peak temperature of sintering)和最终烧结温度CTs(Cease temperature of sintering)。

准东煤灰在烧结过程中烧结强度会明显提高,孔隙率增大,比表面积随温度升高表现为先增大后减小的趋势[87]。在研究煤灰烧结温度时,因为初始烧结温度是决定煤灰开始发生烧结的最低温度,也是锅炉受热面开始发生烧结性积灰的温度,因此较多研究关注如何提高煤灰初始烧结温度,减轻锅炉的积灰结渣。

2.2 烧结过程影响因素

目前,煤灰烧结特性的研究较多,对于循环流化床锅炉,煤灰首先会发生烧结,进而发生熔融现象,灰的烧结特性是导致受热面沾污、积灰、结渣等的主要影响因素之一,普遍认为煤灰的烧结特性与反应温度、煤灰化学组成、煤灰形态、压力、添加剂种类、锅炉设计方式、锅炉运行工况有关。

2.2.1 反应温度

温度对于高钠煤烧结过程的影响显著,温度越高,高钠煤烧结程度越高[25-27]。陈川等[19]对新疆高钠煤进行了逐级萃取研究,发现中国新疆高钠煤中的钠主要以水溶钠性为主,有机钠和不可溶性钠含量较少。Quyn等[28-29]指出,热解时较高温度与较快的升温速率会加剧Cl和Na挥发,使大部分水溶性Na随挥发分的析出而挥发完。Wang等[30]对准东煤中钠释放规律的研究也得到了相似结论。因此,反应温度越高,越多的可溶性钠挥发并冷凝到受热面上,降低了熔融层的烧结温度,导致烧结程度增加,使受热面结渣严重,并造成吹灰困难。俞海淼等[31]对6种不同灰熔点煤灰样的熔融特性进行研究,发现华亭和阜新煤灰钠、钾含量(>3%)较高,其烧结率随温度的升高而快速增加,在1 000 ℃时即具有强沾污结渣倾向,其烧结率均大于70%;混煤和兖州煤灰的钠含量较低,烧结程度受温度影响较小,烧结率增长相对缓慢,总体烧结率不高。由此可知,煤灰中Na含量越高,其烧结特性受温度影响越大。

2.2.2 化学组成

在一定范围内,煤灰碱酸比(B/A)越大,烧结温度越低。Chao等[32]将煤灰与生物质共烧研究发现,煤灰的碱酸比(B/A)低于0.35时,烧结温度随B/A的增大迅速降低,B/A从0.18升到0.35,烧结温度从900 ℃降到580 ℃左右;B/A大于0.35时,碱酸比对煤灰烧结温度影响不大,B/A从0.35升到0.85,烧结温度仅从580 ℃降到550 ℃。Ji[33]等对小龙潭和霍林河褐煤灰样品的研究发现,小龙潭煤灰比霍林河煤灰的烧结温度低,这是由于小龙潭煤灰的碱酸比高于霍林河煤灰。

2.2.3 煤灰粒径

准东煤燃烧时产生大量PM0.2超细颗粒,其化学组分为硫22.2%、钠23.1%、氯6.2%;在粒度0.2~1.0 μm内,S、Na、K、Cl质量占比显著降低,Ca、Mg成分大幅增加。粒径小于0.2 μm超细颗粒的主要成分可能是NaCl和Na2SO4,而粒径在1.0~10 μm粗颗粒主要是硅酸盐和硅铝酸盐的形式[14]。不同粒径的煤灰颗粒碱金属含量不同,而煤的碱金属含量与烧结温度直接相关,故煤灰颗粒粒径对煤灰烧结也有一定影响[34]。Xu等[35]利用粒度分析仪对燃烧后的准东煤灰进行分析,发现当准东煤灰颗粒粒径<10 μm时,有较高的沉积倾向。

2.2.4 反应气氛

不同的反应气氛下,煤灰各成分间发生的化学反应不同,生成的共晶混合物也不同,因此,反应气氛对烧结过程的影响不能忽视。烧结点温度排序依次为:还原性气氛下2环境<氧化性气氛,其中煤气化气氛与H2/CO气氛相似,烧结点温度随反应气氛还原性增强而降低[37-38]

反应气氛对煤灰烧结过程的主要影响因素为煤灰中铁离子的存在状态。煤灰中三价铁离子(Fe3+)的极性较高,是聚合物的主要构成部分,能够使煤灰烧结温度提高;二价的铁离子(Fe2+)易与煤灰熔体中还未达到键饱和的O2-相结合,从而破坏煤灰熔体的网络结构,降低煤灰黏度,导致烧结温度降低。在高温还原性气氛下(如H2、CO气氛),部分Fe3+被还原成Fe2+,煤灰黏度降低,煤灰烧结温度降低[33,36,39]。此外,二价的铁氧化物易与煤灰中的矿物质生成斜铁辉石、铁铝榴石、铁尖晶石等易相互发生低温共熔现象的铁系矿物质,从而降低煤灰的烧结温度,涉及的反应[40]

Fe2O3+H2/CO2FeO+H2O/CO2,

(1)

SiO2+FeOFeO·SiO2(斜铁辉石),

(2)

4CaO·Al2O3·2SiO2(钙长石)+6FeO

2FeO·SiO2+2FeO·Al2O3(铁尖晶石)+

2FeO·Al2O3·3SiO2(铁铝榴石)+4CaO。

(3)

2.2.5 添加剂

根据氧化物对煤灰烧结特性的不同影响,将添加剂分为碱性氧化物与酸性氧化物[42]。碱性氧化物(Fe2O3、CaO、MgO、Na2O、K2O)含量越高,煤灰烧结温度越低;酸性氧化物(SiO2、Al2O3)含量越高,煤灰烧结温度越高[42-45]。“离子势”的观点[46]能够阐明碱性氧化物对煤灰的助熔机制,酸性阳离子因离子势高且易与氧结合形成复杂的多聚物或离子,能够提高煤灰烧结温度;而作为氧的给予体的碱性阳离子,因离子势低且能阻止多聚物间发生黏聚,降低其黏度,达到助熔效果,降低煤灰烧结温度。Lolja等[47]利用17种阿拉伯煤,从酸性和碱性氧化物、结晶成分、助融剂成分和水泥组分等方面进行研究,证实了添加碱性氧化物可降低灰烧结温度。JING等[38]利用FactSage的热力学平衡计算软件模拟了气化气氛下烧结温度范围内的矿物转变,发现随着SiO2含量增加,烧结温度先降低后升高。总的来说,随着Fe2O3、CaO、Na2O和K2O含量增加,烧结温度降低。随着MgO含量增加,烧结温度降低;但MgO含量增加到一定限度时,对烧结温度的影响不明显。

Fe2O3对煤灰的烧结过程影响见式(1)~(3)。还原气氛下,煤灰烧结温度随Fe2O3含量的增加而下降;氧化气氛下,随着Fe2O3含量增加,煤灰烧结温度的降低幅度较小,主要是因为在氧化气氛下铁离子以极性较高的Fe3+形式存在,是形成聚合物的主要成分,有提高烧结温度的作用,而其他低温共熔体的存在对烧结温度的降低作用减弱[33,48-51]

CaO对煤灰的烧结过程影响见式(4)、(5)。Schober等[52]对Rosebu次烟煤的研究发现,随着煤灰中CaO含量增加,煤灰烧结温度下降。由于在高温下CaO易与其他矿物质发生反应形成钙长石、钙铝黄长石等易产生低温共熔现象的矿物质,从而使煤灰烧结温度降低。

3Al2O3·2SiO2(莫来石)+3 CaO

3CaO·Al2O3·2SiO2(钙长石),

(4)

CaO·Al2O3·2SiO2 +CaO

2CaO·Al2O3·SiO2(钙铝黄长石)+SiO2

(5)

MgO是碱性化合物,对煤灰有一定的助熔作用,能在一定范围内降低煤灰烧结温度。在烧结过程中,由于MgO与游离Al2O3和SiO2反应,煤灰中的高熔点矿物质莫来石(Al6Si2O13)减少,而低熔点矿物质堇青石(Mg2 Al4Si5O18)增加,导致煤灰烧结温度降低,铁基化合物(Fe2Al4Si5O18)转化为铁铝尖晶石(FeO·Al2O3)(式(6))。此外,铁铝尖晶石作为铁基化合物,可显著降低煤灰烧结温度。但MgO含量超过一定比例后对烧结温度的影响不大[38,53]

2MgO+2Al2O3+Fe2Al4Si5O18

Mg2Al4Si5O18(堇青石)+2FeO·Al2O3(铁铝尖晶石)。

(6)

Na2O对煤灰的烧结过程影响见式(7)。随着煤灰中Na2O含量增加,煤灰烧结温度逐渐降低。Na2O易与石英、Al2O3形成霞石,霞石是一种典型的、具有强助熔性的碱性矿物质,故虽然Na2O在煤灰中含量较少,但其降低烧结温度的作用很大[38,54]

Na2O+Al2O3+2SiO2Na2O·Al2O3·2SiO2(霞石)。

(7)

K2O对煤灰烧结温度无明显的降低作用[55]。烧结过程中,随着K2O含量增加,白榴石含量逐渐增加(式(8)),白榴石是一种低熔点的矿物质,会在一定程度上降低煤灰烧结温度。

K2O+Al2O3+4SiO2K2O·Al2O3·4SiO2(白榴石)。

(8)

在煤灰中添加Al2O3,烧结温度的变化趋势与添加比例有关。王勤辉等[53]在氧化性气氛和还原性气氛下对煤灰烧结的特性研究发现,烧结温度均随Al2O3添加比例先降低后升高。随着Al2O3含量略微增加,还原性气氛下Al2O3与煤灰中SiO2等其他氧化物反应生成铁尖晶石、铁橄榄石等易发生低温共熔的矿物质;氧化性气氛下Al2O3与煤灰中SiO2等氧化物反应生成斜长石、钙长石等易发生低温共熔的矿物质,导致煤灰烧结温度降低。Al2O3含量进一步增加后,煤灰烧结温度升高,这是因为与Al2O3反应形成低温共熔体的其他灰分不足。此外,高熔点的Al2O3在煤灰熔融过程中起构成骨架的作用,其含量越高,熔体越不易发生变形,Al2O3含量继续增至30%后,Al2O3含量对烧结温度影响不大。

SiO2可在一定程度提高高煤灰烧结温度。添加比例比较小时,煤灰中的矿物种类几乎不变,SiO2对于煤灰烧结温度影响较小;添加比例超过5%后,灰中钙黄长石消失,出现透辉石,煤灰烧结温度升高(式(9))[56]。虽然钙黄长石熔点高于透辉石熔点,但钙黄长石易与其他矿物质发生共熔,因此透辉石的产生有利于提高煤灰烧结温度。

2CaO·Al2O3·SiO2(钙黄长石)+MgO+

SiO2Al2O3+2CaO·MgO·2SiO2(透辉石)。

(9)

2.2.6 锅炉设计

锅炉的结构、受热面材质、燃烧器布置方式等对煤灰烧结有重要影响。锅炉受热面布置不合理(如受热面积过小、管间距过小等)及燃烧器布置方式不合理,煤灰易发生烧结,使锅炉产生严重的积灰结渣。受热表面越粗糙,对熔融灰颗粒黏合力越强,形成的烧结灰层也越厚,积灰结渣越严重[57-59]

2.2.7 锅炉运行工况

锅炉风煤配比不当、炉膛的出口烟温过高、锅炉长时间超负荷运行等,会影响炉内气氛及反应温度,进而影响煤灰烧结温度,使烟气中矿物质化学组成及飞灰颗粒冲撞锅炉受热面时的形态发生改变,对积灰结渣造成影响[57-59]

2.3 烧结温度测试方法

2.3.1 热导率分析法

热导率分析法能够测量煤灰不同温度下的导热性质,从而得到燃烧区域中的热导率[92]。灰样烧结后,灰颗粒表面发生黏结,煤灰间的导电接触面积变大,导热系数随温度升高比率的增加而增加,故烧结温度可依据煤灰性质进行研究。用此方法试验时,将灰样压制成圆柱状(φ13 mm×2.5 mm),放在2块接有热电偶的平板间加热。通过选用耐火纤维保温以及选用灰柱的直径远大于高度来减少灰柱的径向热损失。为计算灰柱在不同温度下的热流量,采用导热性较好的Pyrex和Vycor耐热玻璃作为参照样。每隔50 ℃测量灰柱的厚度及不同材料间的温度。由傅里叶定律(式(10))得到不同温度下灰样的导热系数。

(10)

其中,q为热流量;K为导热系数;A为表面积;ΔT为样品两端的温差;ΔX为样品厚度。热流量q由Pyrex和Vycor耐热玻璃获得,进而得到导热系数K。此方法测量的煤灰烧结温度较真实值偏大。

2.3.2 压力测量法

将制取的4个灰柱放入管式炉中加热至1 000 ℃,加热过程中通入N2,从500 ℃升温至1 000 ℃,每升高100 ℃,灰柱在管式炉中进行1次热处理,每次热处理时间为4 h。热处理完后,采用标准强度测量装置,以1 mm/min速度测量每个灰柱的压应力,再计算4个灰柱的平均压应力并绘制平均压应力与热处理温度的曲线,煤灰烧结温度为压应力强度值发生显著增大时的热处理温度[93-94]

2.3.3 热机械分析法

热机械分析法的原理是利用灰样的物理性质随温度变化而改变来测量煤灰的烧结温度[95-96]。测量烧结温度时,需要通入氩气,防止碳坩埚的氧化。用0.35 MPa将100 mg灰样压入碳坩埚中,以10 ℃/min升温速率将样品从室温升到1 000 ℃,且持续测量灰样高度。图3为灰样在热机械分析仪中的测量示意[97]。灰样的收缩量变化率随温度而变,绘制收缩率与温度曲线,收缩率为0.1 μm/℃时的温度即为烧结温度[98]

图3 热机械分析仪测量示意

Fig.3 Schematic diagram of thermomechanical analyzer measurement

2.3.4 筛分法

在537 ℃下制备煤灰试样(此温度下的煤灰一般不会有明显烧结现象)。试样用100目(150 μm)筛子过筛后,将粒径小于150 μm的试样放入炉内在537~1 092 ℃下加热30 min,待试样冷却后再用100目筛子筛分。将筛上试样残余量的质量分数定义为煤灰烧结比。作出煤灰烧结比随温度的变化曲线,随着温度升高,在某一温度下煤灰烧结比突然增长较快,此温度即定义为初始烧结温度ITs[99-100]。煤灰初始烧结温度越低,说明在同一温度下此煤灰越易发生烧结,积灰结渣倾向更强。

2.3.5 压降法

为准确测量煤灰烧结温度并保证煤灰烧结温度的测试具有操作性、精确性和重复性,1999年,Al-Otoom首次提出利用压降法测量煤灰烧结的起始温度、孔隙率变化、表面自由能等参数,为研究煤灰烧结机理提供了更科学、操作性更强的研究方法[85,92,101-103]。压降法的理论基础为达西定律,即

(11)

其中,L为灰柱长度;u为气体流速;η为气体黏度;B0为可渗透系数。气体流速、可渗透系数及灰柱长度可视为恒定,压差与气体黏度成正比,而气体黏度与温度成正比,故压差与温度成正比,随温度的升高而增大。煤灰发生烧结时,在灰柱内部及管道与灰柱之间形成新的气体通道,灰柱两端的压差减小。故在发生烧结时,压差随温度的变化曲线上出现一个转折点,其所对应的温度定义为煤灰的烧结温度。

采用压降法测量烧结温度的试验过程中,使用的模具材质为石英玻璃管,孔径与氧化铝管一致,将制得的直径与高皆为8 mm的灰柱放入氧化铝管中加热到1 000 ℃,升温速率为10 ℃/min,加热过程中将通入空气,流速为20 mL/min。试验过程中记录灰柱温度及压差,并绘制出变化曲线,曲线中压差达到最大时对应的温度即为烧结温度。

Li等[103]利用压降法及灰矿物学和地球化学效应对粉煤灰进行烧结温度研究,基于压降曲线做温度函数的一阶和二阶导数,提出了一种确定压降烧结法测得的灰分烧结温度的新准则,即准确的烧结温度点是压降曲线上达到最大值前面的一个点,该点的压差随温度的一阶导数开始变小。

Al-Otoom等[92]采用热导率分析法、压力测量法、热机械分析法、及压降法对次烟煤、烟煤煤灰烧结温度进行测量,发现压降法结果较好,误差仅为±10 ℃,热机械分析法其次为±20 ℃,而热导率分析法与压力测量法误差较大,均为±50 ℃。筛分法虽也能较准确测量烧结温度,误差与压降法接近,但筛分法需要重复大量试验才能得到烧结温度,试验过程繁琐[100]。综合分析,压降法是目前最合适的烧结温度测量方法。

上海理工大学碳基燃料洁净转化实验室自主搭建了压降法测量烧结温度的试验装置,并进行含钠蒸气对准东煤灰烧结机制的影响研究。

3 研究展望

目前,关于高钠煤中碱金属的存在形式、含量[19,25-27]及其在热转化过程中的迁移特性研究众多,且结论基本一致,而且有关Na引发的沾污[13-18]、结渣机理[19-24]也获得了相当大的进展。同时,从混煤燃烧[32,104]、添加剂[38,41-56]、锅炉设计与运行工艺参数[57-59]等方面出发,来抑制燃高钠煤锅炉中的沾污、结渣,以求100%燃高钠煤锅炉的稳定运行。

1)未来应着重研究煤灰烧结与结渣间的关联规律及Na引发煤灰烧结机制,通过数值模拟与试验手段来研究含钠蒸汽及其浓度对煤灰烧结温度的影响,以寻求引发受热面沾污与煤灰颗粒发生烧结的烟气中Na浓度阈值,为进一步解决高钠煤的积灰结渣提供理论指导。

2)目前压降法是较合适的烧结温度测量方法,但仍存在±10 ℃的误差,未来可继续探索更精确、操作性与重复性更好的烧结温度测量方法,或对现有的压降法进行改良,使测量精度进一步提高。

3)关于烧结温度的影响因素已有较多研究成果,但大多是对各种影响因素分别研究,对于各影响因素间的内在关联,需考虑各影响因素以建立灰颗粒的烧结过程理论模型,可更好地描述颗粒碰撞、烧结和团聚过程。

4 结 语

高钠煤中碱金属含量(主要为Na)比其他煤种高,会导致严重的积灰结渣现象,限制了高钠煤的燃烧利用。因此,探讨高钠煤的积灰结渣过程及煤灰烧结机制,可为高钠煤的沾污结渣防治技术提供一定理论指导。

1)高钠煤在燃烧过程中释放大量气态碱金属(主要为含钠物质)在锅炉受热面及煤灰颗粒表面冷凝,在受热面形成内白层、烧结层和熔融层,引发沾污增强型的“沾污烧结”。煤灰发生烧结后,颗粒间变得致密,抗碎强度大大提高,使吹灰困难,最终使锅炉受热面产生严重的积灰结渣。

2)烧结分为气相烧结、固相烧结和液相烧结,3种烧结方式在高钠煤的烧结过程都有发生。系统表面能的降低是推动烧结过程进行的动力,烧结过程中,煤灰中的开放孔逐渐增大,封闭孔逐渐减小,形成新的气体通道。

3)煤灰的烧结特性与反应温度、煤灰化学组成、煤灰粒径、反应气氛、添加剂种类、锅炉设计及锅炉运行工况有关。煤灰中Na含量越高,煤灰烧结特性受温度影响越大;温度越高,煤灰发生烧结的程度越高,受热面结渣越严重;在一定范围内,煤灰烧结温度与煤灰碱酸比有关,碱酸比越大,烧结温度越低;不同粒径的煤灰颗粒的碱金属含量不同,不同粒径煤灰的烧结温度也不同;还原性气氛下煤灰烧结温度低于空气气氛,空气气氛下煤灰烧结温度低于氧化性气氛;添加剂种类分为碱性氧化物和酸性氧化物,碱性氧化物可降低煤灰烧结温度,酸性氧化物可在一定程度上提高煤灰烧结温度,可在高钠煤煤中掺混含富含酸性氧化物的添加剂以探究实际中的抗结渣作用。

4)测量煤灰烧结温度的方法有热导率分析法、压力测量法、热机械分析法、筛分法及压降法等,其中压降法误差较小,操作性与重复性较好,可较准确测量烧结温度。

总之,关于高钠煤煤灰烧结机理的研究有待进一步深入,为更高效经济的高钠煤沾污结渣防治技术提供更为全面的理论指导。

参考文献(References):

[1] 张守玉,陈川,施大钟,等. 高钠煤燃烧利用现状[J]. 中国电机工程学报,2013,33(5):1-12.

ZHANG Shouyu,CHEN Chuan,SHI Dazhong,et al. Situation of combustion utilization of high sodium coal[J]. Proceedings of the CSEE,2013,33(5):1-12.

[2] LI C Z. Some recent advances in the understanding of the pyrolysis and gasification behaviour of Victorian brown coal[J]. 2007,86(12/13):1664-1683.

[3] GUO S,ZHOU X,SONG S,et al. Optimization of leaching conditions for removing sodium from sodium-rich coals by orthogonal experiments[J]. 2017,208:499-507.

[4] ZHOU J,ZHUANG X,ALASTUEY A,et al. Geochemistry and mineralogy of coal in the recently explored Zhundong large coal field in the Junggar basin,Xinjiang province,China[J]. International Journal of Coal Geology,2010,82(1/2):51-67.

[5] 刘敬,王智化,项飞鹏,等. 准东煤中碱金属的赋存形式及其在燃烧过程中的迁移规律实验研究[J].燃料化学学报,2014,42(3):316-322.

LIU Jing,WANG Zhihua,XIANG Feipeng,et al. Modes of occurrence and transformation of alkali metals in Zhundong coal during combustion[J].Journal of Fuel Cheemistry and Technology,2014,42(3):316-322.

[6] DAI ShiFeng,ZHOU Yiping,REN DeYi,et al. Geochemistry and mineralogy of the Late Permian coals from the Songzao coalfield,Chongqing,Southwestern China[J]. Science in China(Series D:Earth Sciences),2007,50(5):678-688.

[7] 郭帅,霍晓东,宋双双,等. 高钠煤中钠的赋存形态研究[J]. 燃料化学学报,2017,45(10):1172-1177.

GUO Shuai,HUO Xiaodong,SONG Shuangshuang,et al. Occurrence modes of sodium species in sodium-rich coals[J]. Journal of Fuel Chemistry and Technology,2017,45(10):1172-1177.

[8] 严陆光,夏训诚,吕绍勤,等. 大力推进新疆大规模综合能源基地的发展(续)[J]. 电工电能新技术2011,30(2):1-4.

YAN Luguang,XIA Xuncheng,LYU Shaoqin,et al. Great promotion of development of large-scale integrative energy base in Xinjiang[J].Advanced Technology of Electrical Engineering and Energy,2011,30(2):1-4.

[9] 董明钢. 高钠煤对锅炉受热面结渣、沾污和腐蚀的影响及预防措施[J]. 热力发电,2008,37(9):35-39.

DONG Mingang. Influence of high-sodium coal upon slagging,contamination,and corrosion on the heating surface of boilers[J]. Thermal Power Generation,2008,37(9):35-39.

[10] 王礼鹏. 准东煤燃烧过程中的沾污结渣特征实验研究[D]. 武汉:华中科技大学,2015:20-25.

WANG Lipeng. Experimental study on fouling and slagging characteristics during combustion of Zhundong coal[D]. Wuhan:Huazhong University of Science and Technology,2015:20-25.

[11] 潘世汉,陈勤根,陈晓勇,等. 准东高碱煤特性分析及防止锅炉结渣的对策措施[J]. 能源工程,2016(1):67-72.

PANG Shihan,CHEN Qingen,CHEN Xiaoyong,et al. Characteristic analysis of higher-sodium coal of the eastern Jungar and countermeasures for preventing boiler slagging[J]. Energy Engineering,2016(1):67-72.

[12] BRYERS R W. Fireside slagging,fouling,and high-temperature corrosion of heat-transfer surface due to impurities in steam-raising fuels[J]. Progress in Energy & Combustion,1996,22(1):29-120.

[13] PHILIP J,VAN EYK,PETER J,et al. The release of water-bound and organic sodium from Loy Yang coal during the combustion of single particles in a flat flame[J]. Combustion and Flame,2010,158(6):1181-1192.

[14] LI G,LI S,HUANG Q,et al. Fine particulate formation and ash deposition during pulverized coal combustion of high-sodium lignite in a down-fired furnace[J]. Fuel,2015,143(1):430-437.

[15] ZHONGHUA,LAWRENCE. Novel temperature-controlled ash deposition probe system and its application to oxy-coal combustion with 50% inlet O2[J]. Energy & Fuels,2013,28(1):146-154.

[16] 曾宪鹏. 准东煤燃烧过程中灰的生成、沉积及控制机理研究[D]. 武汉:华中科技大学,2019:40-45.

ZENG Xianpeng. Research on the formation,deposition and control mechanism of ash during the combustion of Zhundong coal[D].Wuhan:Huazhong University of Science and Technology,2019:40-45.

[17] 齐晓宾. 高碱低阶煤热化学转化过程中的结渣沾污特性研究[D]. 北京:中国科学院大学(中国科学院工程热物理研究所),2018:35-40.

QI Xiaobin. Study on the characteristics of slagging and fouling during the thermochemical conversion of high-alkali and low-rank coal[D]. Beijing:University of Chinese Academy of Sciences(Institute of Engineering Thermophysics,Chinese Academy of Sciences),2018:35-40.

[18] SATHE C,KERSHAW J R,PANG Y J F. Fates and roles of alkali and alkaline earth metals during the pyrolysis of a Victorian brown coal[J].Fuel,2000,79(3/4):427-438.

[19] 陈川,张守玉,刘大海,等. 新疆高钠煤中钠的赋存形态及其对燃烧过程的影响[J]. 燃料化学学报,2013,41(7):832-838.

CHEN Chuan,ZHANG Shouyu,LIU Dahai,et al. Existence form of sodium in high sodium coals from Xinjiang and its effect on combustion process[J]. Journal of Fuel Chemistry and Technology,2013,41(7):832-838.

[20] XU L,LIU H,ZHAO D,et al. Transformation mechanism of sodium during pyrolysis of Zhundong coal[J]. Fuel,2018,233(1):29-36.

[21] LINAK W P,YOO J I,WASSON S J,et al. Ultrafine ash aerosols from coal combustion:Characterization and health effects[J]. Proceedings of the Combustion Institute,2007,31(2):1929-1937.

[22] WU X,ZHANG X,YAN K,et al. Ash deposition and slagging behavior of Chinese Xinjiang high-alkali coal in 3 MWth pilot-scale combustion test[J]. Fuel,2016,181:1191-1202.

[23] JIN J,LIU D,YANG H,et al. Understanding ash deposition for Zhundong coal combustion in 330 MW utility boiler:Focusing on surface temperature effects[J]. Fuel,2018,216:697-706.

[24] YANG M,XIE Q,WANG X,et al. Lowering ash slagging and fouling tendency of high-alkali coal by hydrothermal pretreatment[J]. International Journal of Mining Science and Technology,2019,29(3):521-525.

[25] 陈川,张守玉,施大钟,等. 准东煤脱钠提质研究[J]. 煤炭转化,2013,36(4):14-18.

CHEN Chuan,ZHANG Shouyu,SHI Dazhong,et al. Study on sodium removal for zhundong coal upgrading[J]. Coal Conversion,2013,36(4):14-18.

[26] 刘大海,张守玉,涂圣康,等. 五彩湾煤中钠在热解过程中的形态变迁[J]. 燃料化学学报,2014,42(10):1190-1196.

LIU Dahai,ZHANG Shouyu,TU Shengkang,et al. Transformation of sodium during Wucaiwan coal pyrolysis[J]. Journal of Fuel Chemistry and Technology,2014,42(10):1190-1196.

[27] 刘大海,张守玉,涂圣康,等. 五彩湾煤中钠在燃烧过程中的迁移释放规律[J]. 化工进展,2015,34(3):705-709.

LIU Dahai,ZHANG Sshouyu,TU Shengkang,et al. Transformation and release of sodium in Wucaiwan coal during combustion[J]. Progress in Chemical Industry,2015,34(3):705-709.

[28] QUYN D M,WU H,HAYASHI J I,et al. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part IV. Catalytic effects of NaCl and ion-exchangeable Na in coal on char reactivity[J]. Fuel,2003,82(5):587-593.

[29] QUYN D M,WU H,LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part I. Volatilisation of Na and Cl from a set of NaCl-loaded samples[J]. Fuel,2002,81(2):143-149.

[30] WANG Z,LIU Y,WHIDDON R,et al. Measurement of atomic sodium release during pyrolysis and combustion of sodium-enriched Zhundong coal pellet[J]. Combustion & Flame,2017,176:429-438.

[31] 俞海淼,曹欣玉,张鹤声,等. 若干典型煤灰样烧结熔融特性研究[J]. 同济大学学报(自然科学版),2008,36(5):664-669.

YU Haimiao,CAO Xinyu,ZHANG Hesheng,et al. Research on sintering and fusion characteristics of several representative coal ashes[J]. Journal of Tongji University(Natural Science Edition),2008,36(5):664-669.

[32] LUAN C,YOU C,ZHANG D. Composition and sintering characteristics of ashes from co-firing of coal and biomass in a laboratory-scale drop tube furnace[J]. Energy,2014,69:562-570.

[33] JI S,LI F,WANG T,et al. Investigation on the sintering behaviors of low-temperature lignite ashes[J]. Journal of Thermal Analysis and Calorimetry,2014,117(3):1311-1320.

[34] 王辉,魏星,秦雪箭,等.不同成灰温度下准东煤灰沉积特性实验研究[J]. 哈尔滨工业大学学报,2018,50(1):82-89.

WANG Hui,WEI Xin,QING Xujian,et al.Experimental investigation of Zhundong ash deposits characteristics under different ashing temperatures using an online image system[J]. Journal of Harbin Institute of Technology,2018,50(1):82-89.

[35] XU J,YU D,FAN B,et al. Characterization of ash particles from co-combustion with a zhundong coal for understanding ash deposition behavior[J].Energy & Fuels,2014,28:678-684.

[36] 王勤辉,揭涛,李小敏,等. 反应气氛对不同煤灰烧结温度影响的研究[J]. 燃料化学学报,2010,38(1):17-22.

WANG Qinhui,JIE Tao,LI Xiaomin,et al. Research on the influence of reaction atmosphere on different coal ash sintering temperature[J]. Journal of Fuel Chemistry and Technology,2010,38(1):17-22.

[37] JING N J,WANG Q H,YANG Y K,et al. Influence of ash composition on the sintering behavior during pressurized combustion and gasification process[J]. Journal of Zhejiang University-Science A(Applied Physics & Engineering),2012,13(3):230-238.

[38] JING N,WANG Q,LUO Z,et al. Effect of chemical composition on sintering behavior of jincheng coal ash under gasification atmosphere[J]. Chemical Engineering Communications,2012,199(2):189-202.

[39] 龚德生. 煤灰的高温粘度模型[J]. 热力发电,1989(1):28-33.

GONG Desheng. High temperature viscosity model of coal ash[J]. Thermal Power Generation,1989(1):28-33.

[40] 李帆,邱建荣,郑楚光. 煤中矿物质对灰熔融温度影响的三元相图分析[J]. 华中理工大学学报,1996,24(10):97-100.

LI Fan,QIU Jianrong,ZHENG Chuguang. Ternary phase diagram analysis of the influence of coal minerals on ash melting temperature[J]. Journal of Huazhong University of Science and Technology,1996,24(10):97-100.

[41] 李慧,李寒旭,武成利. 红外光谱在煤灰熔融性研究中的应用[J]. 煤炭科学技术,2006,34(3):24-26.

LI Hui,LI Hanxu,WU Chengli. Infrared spectrum applied to research of ash fusion [J]. Coal Science and Technology,2006,34(3):24-26.

[42] 李宝霞,张济宇. 煤灰渣熔融特性的研究进展[J]. 现代化工,2005(5):25-29,31.

LI Baoxia,ZHANG Jiyu. Research progress on the melting characteristics of coal ash and slag[J]. Modern Chemical Industry,2005(5):25-29,31.

[43] 王泉清,曾蒲君. 煤灰熔融性的研究现状与分析[J]. 煤炭转化,1997,20(2):32-37.

WANG Quanqing,ZENG Pujun. Research status and analysis of coal ash fusibility[J]. Coal conversion,1997,20(2):32-37.

[44] 修洪雨. 燃煤灰渣主要成分的熔融特性研究[D]. 杭州:浙江大学,2005:47-56.

XIU Hongyu. Study on the melting characteristics of the main components of coal-fired ash[D].Hangzhou:Zhejiang University,2005:47-56.

[45] 白进,李文,孔令学,等. 气化过程的灰化学及其应用[J]. 煤炭加工与综合利用,2015(2):10-17.

BAI Jin,LI Wen,KONG Lingxue,et al. Ash chemistry in gasification process and its application[J]. Coal Processing and Comprehensive Utilization,2015(2):10-17.

[46] VASSILEV S V,KITANO K,TAKEDA S,et al. Influence of mineral and chemical composition of coal ashes on their fusibility[J]. Fuel Processing Technology,1995,45(1):27-51.

[47] LOLJA S A,HAXHI H,GJJLI D. Ash composition of the main Albanian coals[J]. Fuel,2000,79(2):207-209.

[48] LI H X,Tang X S,Yong X. Ash melting behavior by Fourier transform infrared spectroscopy[J]. Journal of China University of Mining & Technology,2008,18(2):245-249.

[49] WU X,ZHANG Z,CHEN Y,et al. Main mineral melting behavior and mineral reaction mechanism at molecular level of blended coal ash under gasification condition[J]. Fuel Processing Technology,2010,91(11):1591-1600.

[50] SONG W J,TANG L H,ZHU X D,et al. Prediction of Chinese coal ash fusion temperatures in Ar and H2 atmospheres[J]. Energy Fuels ,2009,23(4):1990-1997.

[51] ZHANG Z,WU X,ZHOU T,et al. The effect of iron-bearing mineral melting behavior on ash deposition during coal combustion[J].Proceeding of the Combustion Institute,2011,33(2):2853-2861.

[52] SCHOBERT H H,WITTHOEF C. The petrochemistry of coal ash slags. Part 3. Behavior of the rosebud slag-limestone system[J].Fuel Processing Technology,1981,5(1/2):157-164.

[53] 王勤辉,景妮洁,骆仲泱,等. 灰成分影响煤灰烧结温度的实验研究[J]. 煤炭学报,2010,35(6):138-143.

WANG Qinhui,JING Nijie,LUO Zhongyang,et al. Experiments on the effect of chemical components of coal ash on the sintering temperature[J]. Journal of China Coal Society,2010,35(6):138-143.

[54] CHAO Q I,XIAO H,WANG D,et al. Effect of sodium oxide content on ash sintering strength of high alkali coal[J]. Thermal Power Generation,2018,47(1):19-25,32.

[55] 毛军. 含钾钠矿物质在煤燃烧过程转变特征研究[D]. 武汉:华中科技大学,2003:77-89.

MAO Jun. Study on the transformation characteristics of potassium and sodium minerals during coal combustion[D]. Huazhong University of Science and Technology,2003:77-89.

[56] 刘炎泉. 循环流化床燃用新疆准东煤结渣沾污机理及防止研究[D]. 杭州:浙江大学,2019:70-80.

LIU Yanquan. Study on slagging and contamination mechanism and prevention of Xinjiang Zhundong coal used in circulating fluidized bed[D].Hangzhou:Zhejiang University,2019:70-80.

[57] 薛瑞轩. 准东煤燃烧与结渣特性研究[D]. 保定:华北电力大学,2015:40-60.

XUE Ruixuan. Study on the characteristics of combustion and slagging of Zhundong coal[D].Baoding:North China Electric Power University,2015:40-60.

[58] 赵国柱,黄羽,杜永安. 燃用新疆准东煤锅炉防结渣设计[J]. 吉林电力,2014,42(2):42-43.

ZHAO Guozhu,HUANG Yu,DU Yongan. Anti-slag design for boilers burning xinjiang Zhundongcoal[J]. Jilin Electric Power,2014,42(2):42-43.

[59] 赵勇纲,王志超,张喜来,等. 纯燃高碱煤660 MW机组防结渣沾污一体化设计[J]. 热力发电,2018,47(3):104-108,122.

ZHAO Yonggang,WANG Zhichao,ZHANG Xilai,et al. Integrated design of anti-slagging and fouling for a 660 MW unit burning pure high alkali coal[J]. Thermal Power Generation,2018,47(3):104-108,122.

[60] 江锋浩,张守玉,黄小河,等. 高碱煤燃烧过程中结渣机理研究进展[J]. 煤炭转化,2018,41(2):1-8.

JIANG Fenghao,ZHANG Shouyu,HUANG Xiaohe,et al. Research progress on slagging mechanism during high alkali coal combustion process[J]. Coal Conversion,2018,41(2):1-8.

[61] LAURSEN K,FRANDSEN F,LARSEN O H. Ash deposition trials at three power stations in Denmark[J]. Energy & Fuels,1998,12(2):429-442.

[62] LI G,LI S,DONG M,et al. Comparison of particulate formation and ash deposition under oxy-fuel and conventional pulverized coal combustions[J]. Fuel,2013,106:544-551.

[63] WEI B,WANG X,TAN H,et al. Effect of silicon-aluminum additives on ash fusion and ash mineral conversion of Xinjiang high-sodium coal[J]. Fuel,2016,181(1):1224-1229.

[64] SRINIVASACHAR S,HELBLE J J,HAM D O,et al. A kinetic description of vapor phase alkali transformations in combustion systems[J]. Progress in Energy & Combustion ence,1990,16(4):303-309.

[65] GLARBORG P,MARSHALL P J C,FLAME. Mechanism and modeling of the formation of gaseous alkali sulfates[J]. Combustionand Flame,2005,141(1):22-39.

[66] HUFFMAN G P,HUGGINS F E,SHAH N,et al. Behavior of basic elements during coal combustion[J]. Progress in Energy & Combustion Science,1990,16(4):243-251.

[67] 白雪,王振东. 燃用新疆高碱煤锅炉防结渣和沾污措施[J]. 锅炉技术,2016,47(6):49-53.

BAI Xue,WANG Zhendong. Preventing measures of fouling and slagging for boilers burning high-alkaline coal in Xinjiang[J]. Boiler Technology,2016,47(6):49-53.

[68] WEI B,TAN H,WANG Y,et al. Investigation of characteristics and formation mechanisms of deposits on different positions in full-scale boiler burning high alkali coal[J]. Applied Thermal Engineering,2017,119(2):449-458.

[69] BAXTER L L,RICHARDS G H,OTTESEN D K,et al. In situ,real-time characterization of coal ash deposits using Fourier transform infrared emission spectroscopy[J]. Energy & Fuels,1993,7(6):755-760.

[70] 李君杰,熊彪,张泰,等. 准东煤灰沉积特性的实验研究[J]. 工程热物理学报,2017,38(8):1790-1794.

LI Junjie,XIONG Biao,ZHANG Tai,et al. Experimental study on the sedimentary characteristics of coal ash in Zhundong[J]. Journal of Engineering Thermophysics,2017,38(8):1790-1794.

[71] ZHAN Z,FRY A R,WENDT J O L J F. Relationship between submicron ash aerosol characteristics and ash deposit compositions and formation rates during air-and oxy-coal combustion[J]. Fuel,2016,181:1214-1223.

[72] WANG X B,XU Z X,WEI B,et al. The ash deposition mechan-ism in boilers burning Zhundong coal with high contents of sodium and calcium:A study from ash evaporating to condensing[J]. Applied Thermal Engineering,2015,80:150-159.

[73] 马岩,黄镇宇,唐慧儒,等. 准东煤灰化过程中的矿物演变及矿物添加剂对其灰熔融特性的影响[J]. 燃料化学学报,2014,42(1):20-25.

MA Yan,HUANG Zhenyu,TANG Huiru,et al. Mineral conversion of Zhundong coal during ashing process and the effect of mineral additives on its ash fusion characteristics[J]. Journal of Fuel Chemistry and Technology,2014,42(1):20-25.

[74] ZHANG L,NINOMIYA Y,YAMASHITA T. Formation of submicron particulate matter(PMI)during coal combustion and influence of reaction temperature[J]. Fuel,2006,85(10/11):1446-1457.

[75] NORDGREN D,HEDMAN H,PADBAN N,et al. Ash transformations in pulverized fuel co-combustion of straw and woody biomass[J]. Fuel and Energy Abstracts,2011,105(1):52-58.

[76] TONMUKAYAKUL N,NGUYEN Q D. A new rheometer for direct measurement of the flow properties of coal ash at high temperatures[J]. Fuel,2002,81(4):397-404.

[77] 马志斌,白宗庆,白进,等. 高温弱还原气氛下高硅铝比煤灰变化行为的研究[J]. 燃料化学学报,2012,40(3):279-285.

MA Zhibin,BAI Zongqing,BAI Jin,et al.Evolution of coal ash with high Si /Al ratio under reducing atmosphere at high temperature[J]. Journal of Fuel Chemistry and Technology,2012,40(3):279-285.

[78] 樊先平. 无机非金属材料科学基础[M].杭州:浙江大学出版社,2004:49-97.

FAN Xianping. Inorganic non-metallic materials science foundation[M].Hangzhou:Zhejiang University Press,2004:49-97.

[79] ZHOU H,ZHOU B,LI L,et al. Experimental measurement of the effective thermal conductivity of ash deposit for high sodium coal(Zhundong coal)in a 300 kW test furnace[J]. Energy & Fuels,2013,27(7):7008-7022.

[80] ZHOU H,ZHOU B,ZHANG H,et al. Behavior of fouling deposits formed on a probe with different surface temperatures[J]. Energy & Fuels,2014,28(12):7701-7711.

[81] 许明磊,严建华,马增益,等. CFB垃圾焚烧炉烟道沿程烧结积灰的特性[J]. 动力工程学报,2006,26(4):550-553.

XU Minglei,YAN Jianhua,MA Zengyi,et al. Particularities concerning sintered ash deposits along flue ways of CFB waste incinerators[J]. Power Engineering,2006,26(4):550-553.

[82] LONGWELL J P. Mineral Impurities in coal combustion:behavior,problems,and remedial measures by Erich Raask[J]. American Scientist,1987,75(1):90-91.

[83] LI G,LI S,XU X,et al. Dynamic behavior of biomass ash deposition in a 25 kW one-dimensional down-fired combustor[J]. Energy & Fuels,2014,28:219-227.

[84] 许国镇,尹光衡,张秀荣. 安徽黄山石煤烧结包裹与钒转化的研究[J]. 矿产综合利用,1992(4):4-8.

XU Guozhen,YIN Guangheng,ZHANG Xiurong. Research on sintering and vanadium transformation of Huangshan Stonecoal in Anhui[J]. Comprehensive Utilization of Minerals,1992(4):4-8.

[85] Al-OTOOM A Y,ELLIOTT L K,WALL T F,et al. Measurement of the sintering kinetics of coal ash[J]. Energy & Fuels,2000,14(5):97-109.

[86] WHITTEMORE O J,SIPE J J. Pore growth during the initial stages of sintering ceramics[J]. Powder Technology,1974,9(4):159-164.

[87] 石运鑫. 组分对准东煤灰烧结特性的影响机理[D]. 哈尔滨:哈尔滨工业大学,2019:8-9.

SHI Yunxin,The influence mechanism of component on sintering characteristics of Zhundong coal ash [D]. Harbin:Harbin Institute of Technology,2019:8-9.

[88] 张帅. 准东煤灰烧结特性实验研究[D]. 哈尔滨:哈尔滨工业大学,2017:7-8.

ZHANG Shuai. Experimental study on characteristics of zhundong coal ash sintering[D].Harbin:Harbin Institute of Technology,2017:7-8.

[89] 马安,何新波,杨振亮,等. 真空气相反应烧结法制备金刚石-碳化硅复合材料[J]. 稀有金属材料与工程,2013,42(S1):248-251.

MA An,HE Xinbo,YANG Zhenliang,et al. Preparation ofdiamond/SiC composites by vapor vacuum reactive infiltration sintering process[J]. Rare Metal Materials and Engineering,2013,42(S1):248-251.

[90] RYAN A G,RUSSELL J K,HEAP M J,et al. Timescales of porosity and permeability loss by solid-state sintering[J]. Earth and Planetary Ence Letters,2020,549:116533.

[91] 谭寿洪,陈忠明,江东亮. 液相烧结SiC陶瓷[J]. 硅酸盐学报,1998,26(2):3-5.

TAN Shouhong,CHEN Zhongming,JIANG Dongliang. Liquid phase sintered SiC ceramics[J]. Journal of the Chinese Ceramic Society,1998,26(2):3-5.

[92] Al-OTOOM A Y,BRYANT G W,ELLIOTT L K,et al. Experimental options for determining the temperature for the onset of sintering of coal ash[J]. Energy & Fuels,1999,14:41.

[93] JUNG B. Sintering characteristics of low-rank coal ashes[J]. Korean Journal of Chemical Engineering 1996,13(6):633-639.

[94] JUNG B,SCHOBERT H H J E,FUELS.Viscous sintering of coal ashes. 1. Relationships of sinter point and sinter strength to particle size and composition[J]. Energy & Fuels,1991,5(4):555-561.

[95] WALL T F,CREELMAN R A,GUPTA R P,et al. Coal ash fusion temperatures—New characterization techniques,and implications for slagging and fouling[J]. Progress in Energy and Combustion Science,1998,24(4):345-353.

[96] 杜淑凤. 灰熔融性与煤灰成渣机理的研究[J]. 煤质技术,2002(2):51-55.

DU Shufeng. Research on ash fusibility and slag formation mechanism of coal ash[J]. Coal Quality Technology,2002(2):51-55.

[97] 景妮洁. 加压流化床气化条件下灰熔融特性研究[D]. 杭州:浙江大学,2013:18-20.

JING Nijie. Ash fusion behaviors of coal and biomass during pressurized fluidized bed gasification process[D].Hangzhou:Zhejiang University,2013:18-20.

[98] 张章,马菊梅,李维成,等. 五彩湾煤灰的烧结特性及不同添加剂的影响规律[J]. 燃料化学学报,2019,47(3):263-270.

ZHANG Zhang,MA Jumei,LI Weichen,et al. Sintering characteristics of Wucaiwan coal ash and effect of different additives[J]. Journal of Fuel Chemistry and Technology,2019,47(3):263-270.

[99] 孙亦騄. 煤中矿物杂质对锅炉的危害[M]. 北京:水利电力出版社,1994:118-119.

SUN Yilu. The harm of mineral impurities in coal to boilers[M]. Beijing:Water Power Press,1994:118-119.

[100] 何骏鹏. 影响煤灰烧结特性及沾污的因素研究[D]. 保定:华北电力大学,2015:11-12.

HE Junpeng. Research on factors affecting coal ash sintering characteristics and contamination[D].Baoding:North China Electric Power University,2015:11-12.

[101] Al-OTOOM A Y,ELLIOTT L K,MOGHTADERI B,et al. The sintering temperature of ash,agglomeration,and defluidisation in a bench scale PFBC[J]. Fuel,2005,84(1):109-114.

[102] Al-OTOOM A Y,NINOMIYA Y,MOGHTADERI B,et al. Coal ash buildup on ceramic filters in a hot gas filtration system[J]. Energy Fuels,2003,17(2):316-320.

[103] LI J,ZHU M,ZHANG Z,et al. A new criterion for determination of coal ash sintering temperature using the pressure-drop technique and the effect of ash mineralogy and geochemistry[J]. Fuel,2016,179(1):71-78.

[104] 白杨,赵勇纲,徐会军,等. 准东煤及其混煤燃烧与结渣特性[J]. 洁净煤技术,2019,25(6):132-138.

BAI Yang,ZHAO Yonggang,XU Huijun,et al. Combustion and slagging characteristics of Zhundong coal and blended coals[J]. Clean Coal Technology,2019,25(6):132-138.

Research progress on sintering characteristics of high sodium coal ash

HUANG Dongdong1,2,ZHANG Shouyu1,CHANG Ming1,SHI Yue1,LIN Chunyu1,XU Jiaqing1,ZHANG Peizheng1,ZHANG Hua1,2,HU Nan3

(1.School of Energy and Power Engineering,University of Shanghai for Science and Technology,Shanghai 200093,China,2.Shanghai Key Laboratory of Multiphase Flow and Heat Transfer in Power Engineering,Shanghai 200093,China;3.Changchun Institute of Technology,Changchun 130012,China)

Abstract:Zhundong coal in Xinjiang with the characteristics of huge reserves,low mining cost,high volatile yield and low sulfur content,is a high-quality power coal. However,due to high sodium content of Zhundong coal,ash sintering and depositing easily occur on the heating surface during its combustion process,resulting in the serious ash deposits and slagging,which greatly limits the development and utilization of the high sodium coal. Thus,to realize the clean and efficient utilization of high sodium coal,it is necessary to fully understand the sintering characteristics of high sodium coal ash. In this paper,the research progress on the ash depositing and slagging mechanism and ash sintering behavior of high sodium coal was summarized. Furthermore,the inherent relationship between the sintering characteristic and the fouling and slagging behavior of the high sodium coal ash was explored. During the combustion process,alkali metals(mainly sodium)in coal is released into flue gas in the forms of Na2SO4,NaCl and Na,which contact with the heating surface and condenses onto it to form viscous inner white layer. The fly ash particles in the flue gas can be captured by the inner white layer and reacts to form low melting point compounds,and thus,the sintering temperature decreases,and the contamination-enhanced "contamination sintering" process on the heating surface of the boiler is promoted and accelerated. The sintering process of high sodium coal ash includes:solid state sintering,liquid phase sintering and gas phase sintering. The influencing factors on the sintering process of the coal ash include reaction temperature,ash composition,ash particle size,reaction atmosphere,additives,boiler design and boiler operating conditions,etc. The additives can be divided into basic oxides and acidic oxides according to the types of oxides. Basic oxides can reduce the sintering temperature of the coal ash,and acidic oxides can increase the sintering temperature of the coal ash to some extent. The future research focuses on the development of new and low-cost additives consisting of single or mixed compound,which can fix sodium matters in the flue gas or react with low-melting sodium-containing minerals in the ash to increase the sintering temperature of high sodium coal ash. Moreover,the influence mechanism of sodium vapor on the dynamic depositing and slagging characteristics should be further studied from the micro-level. The methods for the sintering temperature measurement of coal ash are also introduced,including thermal conductivity analysis method,pressure measurement method,thermomechanical analysis method,sieving method and pressure drop method. Among them,the pressure drop method is relatively accurate for the sintering temperature measurement so far. Laboratory for Clean Conversion of Carbon-based Fuels,USST has engaged in the research on the sintering and slagging characteristics of high-sodium coal ash,in order to provide some guiding meaning for the coal combustion and utilization process.

Key words:high sodium coal;alkali metal;sintering;fouling and slagging;mechanism of sintering

中图分类号:TK6TQ53

文献标志码:A

文章编号:1006-6772(2021)01-0083-12

收稿日期:2020-11-16;责任编辑:张晓宁

DOI:10.13226/j.issn.1006-6772.A20111603

移动阅读

基金项目:吉林省自然科学基金资助项目(YDZJ202101ZYTS180);上海理工大学科技发展项目(2019KJFZ213)

作者简介:黄东东(1996—)男,江西赣州人,硕士研究生,从事高钠煤清洁高效利用研究。E-mail:hdd_edu_usst@163.com。

通讯作者:张守玉,教授,从事高钠煤清洁高效利用和成型生物质燃料研究。E-mail:zhangsy-guo@163. com

引用格式:黄东东,张守玉,常明,等.高钠煤灰烧结特性研究进展[J].洁净煤技术,2021,27(1):83-94.

HUANG Dongdong,ZHANG Shouyu,CHANG Ming,et al.Research progress on sintering characteristics of high sodium coal ash[J].Clean Coal Technology,2021,27(1):83-94.